BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 18467082)

  • 1. Transcript profiling of a MAP kinase pathway in C. albicans.
    Huang H; Harcus D; Whiteway M
    Microbiol Res; 2008; 163(4):380-93. PubMed ID: 18467082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans.
    Deng FS; Lin CH
    Med Mycol; 2018 Feb; 56(2):242-252. PubMed ID: 28431022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP Kinase Regulation of the
    Rastghalam G; Omran RP; Alizadeh M; Fulton D; Mallick J; Whiteway M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans.
    Eisman B; Alonso-Monge R; Román E; Arana D; Nombela C; Pla J
    Eukaryot Cell; 2006 Feb; 5(2):347-58. PubMed ID: 16467475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candica albicans.
    Srinivasa K; Kim J; Yee S; Kim W; Choi W
    Mol Cells; 2012 Feb; 33(2):183-93. PubMed ID: 22358510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans.
    Chen J; Chen J; Lane S; Liu H
    Mol Microbiol; 2002 Dec; 46(5):1335-44. PubMed ID: 12453219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation.
    Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R
    FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis.
    Csank C; Schröppel K; Leberer E; Harcus D; Mohamed O; Meloche S; Thomas DY; Whiteway M
    Infect Immun; 1998 Jun; 66(6):2713-21. PubMed ID: 9596738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants.
    Menon V; Li D; Chauhan N; Rajnarayanan R; Dubrovska A; West AH; Calderone R
    Mol Microbiol; 2006 Nov; 62(4):997-1013. PubMed ID: 17038117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase phosphatase Cpp1p of Candida albicans is independent of the MAP kinase Cek1p.
    Schröppel K; Sprösser K; Whiteway M; Thomas DY; Röllinghoff M; Csank C
    Infect Immun; 2000 Dec; 68(12):7159-61. PubMed ID: 11083847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans.
    Zeidler U; Lettner T; Lassnig C; Müller M; Lajko R; Hintner H; Breitenbach M; Bito A
    FEMS Yeast Res; 2009 Feb; 9(1):126-42. PubMed ID: 19054126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling through protein kinases and transcriptional regulators in Candida albicans.
    Dhillon NK; Sharma S; Khuller GK
    Crit Rev Microbiol; 2003; 29(3):259-75. PubMed ID: 14582620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans.
    Maiti P; Ghorai P; Ghosh S; Kamthan M; Tyagi RK; Datta A
    Fungal Genet Biol; 2015 Oct; 83():45-57. PubMed ID: 26291891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.
    Nakagawa Y
    Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans.
    Arana DM; Alonso-Monge R; Du C; Calderone R; Pla J
    Cell Microbiol; 2007 Jul; 9(7):1647-59. PubMed ID: 17346314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes.
    Andaluz E; Ciudad T; Gómez-Raja J; Calderone R; Larriba G
    Mol Microbiol; 2006 Mar; 59(5):1452-72. PubMed ID: 16468988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways.
    Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC
    FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth.
    Bassilana M; Hopkins J; Arkowitz RA
    Eukaryot Cell; 2005 Mar; 4(3):588-603. PubMed ID: 15755921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p.
    Bensen ES; Martin SJ; Li M; Berman J; Davis DA
    Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.