These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18467082)

  • 41. Candida albicans Cek1 mitogen-activated protein kinase signaling enhances fungicidal activity of salivary histatin 5.
    Li R; Puri S; Tati S; Cullen PJ; Edgerton M
    Antimicrob Agents Chemother; 2015; 59(6):3460-8. PubMed ID: 25824232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross-talk between Tor1 and Sch9 regulates hyphae-specific genes or ribosomal protein genes in a mutually exclusive manner in Candida albicans.
    Kim SW; Joo YJ; Chun YJ; Park YK; Kim J
    Mol Microbiol; 2019 Sep; 112(3):1041-1057. PubMed ID: 31283060
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway.
    Chen T; Jackson JW; Tams RN; Davis SE; Sparer TE; Reynolds TB
    PLoS Genet; 2019 Jan; 15(1):e1007892. PubMed ID: 30703081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complementary roles of the Cek1 and Cek2 MAP kinases in Candida albicans cell-wall biogenesis.
    Correia I; Román E; Prieto D; Eisman B; Pla J
    Future Microbiol; 2016; 11(1):51-67. PubMed ID: 26682470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Candida albicans responds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling.
    van Wijlick L; Swidergall M; Brandt P; Ernst JF
    Mol Microbiol; 2016 Dec; 102(5):827-849. PubMed ID: 27589033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability.
    Kaba HE; Nimtz M; Müller PP; Bilitewski U
    BMC Microbiol; 2013 Jan; 13():16. PubMed ID: 23347662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The MAP kinase signal transduction network in Candida albicans.
    Monge RA; Román E; Nombela C; Pla J
    Microbiology (Reading); 2006 Apr; 152(Pt 4):905-912. PubMed ID: 16549655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion.
    Dieterich C; Schandar M; Noll M; Johannes FJ; Brunner H; Graeve T; Rupp S
    Microbiology (Reading); 2002 Feb; 148(Pt 2):497-506. PubMed ID: 11832513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation.
    Vellucci VF; Gygax SE; Hostetter MK
    Fungal Genet Biol; 2007 Oct; 44(10):979-90. PubMed ID: 17254815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans.
    Navarro-García F; Eisman B; Fiuza SM; Nombela C; Pla J
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2737-2749. PubMed ID: 16079350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iron-responsive chromatin remodelling and MAPK signalling enhance adhesion in Candida albicans.
    Puri S; Lai WK; Rizzo JM; Buck MJ; Edgerton M
    Mol Microbiol; 2014 Jul; 93(2):291-305. PubMed ID: 24889932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans.
    Stynen B; Van Dijck P; Tournu H
    Nucleic Acids Res; 2010 Oct; 38(19):e184. PubMed ID: 20719741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.
    Priegnitz BE; Brandt U; Pahirulzaman KA; Dickschat JS; Fleißner A
    Eukaryot Cell; 2015 Jun; 14(6):602-15. PubMed ID: 25888553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo.
    Fanning S; Xu W; Solis N; Woolford CA; Filler SG; Mitchell AP
    Eukaryot Cell; 2012 Jul; 11(7):896-904. PubMed ID: 22544909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation.
    Chen HF; Lan CY
    PLoS One; 2015; 10(6):e0129903. PubMed ID: 26087243
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile.
    Heilmann CJ; Sorgo AG; Siliakus AR; Dekker HL; Brul S; de Koster CG; de Koning LJ; Klis FM
    Microbiology (Reading); 2011 Aug; 157(Pt 8):2297-2307. PubMed ID: 21602216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans.
    Hefny ZA; Ji B; Elsemman IE; Nielsen J; Van Dijck P
    BMC Microbiol; 2024 Feb; 24(1):66. PubMed ID: 38413885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses.
    Ibe C; Munro CA
    J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575777
    [No Abstract]   [Full Text] [Related]  

  • 59. Activation of Cph1 causes ß(1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner.
    Wagner AS; Hancock TJ; Lumsdaine SW; Kauffman SJ; Mangrum MM; Phillips EK; Sparer TE; Reynolds TB
    PLoS Pathog; 2021 Aug; 17(8):e1009839. PubMed ID: 34432857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway.
    Chen T; Wagner AS; Tams RN; Eyer JE; Kauffman SJ; Gann ER; Fernandez EJ; Reynolds TB
    mBio; 2019 Sep; 10(5):. PubMed ID: 31530671
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.