These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 1846735)
1. Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Arch Biochem Biophys; 1991 Feb; 285(1):83-9. PubMed ID: 1846735 [TBL] [Abstract][Full Text] [Related]
2. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):781-6. PubMed ID: 8240292 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of ethylene glycol to formaldehyde by rat liver microsomes. Role of cytochrome P-450 and reactive oxygen species. Kukiełka E; Cederbaum AI Drug Metab Dispos; 1991; 19(6):1108-15. PubMed ID: 1687018 [TBL] [Abstract][Full Text] [Related]
4. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Winston GW; Feierman DE; Cederbaum AI Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321 [TBL] [Abstract][Full Text] [Related]
5. Role of cytochrome P450 in the oxidation of glycerol by reconstituted systems and microsomes. Clejan LA; Cederbaum AI FASEB J; 1992 Jan; 6(2):765-70. PubMed ID: 1537467 [TBL] [Abstract][Full Text] [Related]
6. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes. Cederbaum AI; Qureshi A Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725 [TBL] [Abstract][Full Text] [Related]
7. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol. Cederbaum AI; Qureshi A; Cohen G Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation. Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1988 Aug; 264(2):482-91. PubMed ID: 2840858 [TBL] [Abstract][Full Text] [Related]
9. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E; Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554 [TBL] [Abstract][Full Text] [Related]
10. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. Winston GW; Cederbaum AI J Biol Chem; 1983 Feb; 258(3):1508-13. PubMed ID: 6296101 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of glycerol to formaldehyde by microsomes: are glycerol radicals produced in the reaction pathway? Rashba-Step J; Step E; Turro NJ; Cederbaum AI Biochemistry; 1994 Aug; 33(32):9504-10. PubMed ID: 8068625 [TBL] [Abstract][Full Text] [Related]
12. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E; Cederbaum AI Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine. Cederbaum AI; Dicker E Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308 [TBL] [Abstract][Full Text] [Related]
14. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968 [TBL] [Abstract][Full Text] [Related]
15. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1992 Nov; 298(2):602-11. PubMed ID: 1329662 [TBL] [Abstract][Full Text] [Related]
16. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation. Beloqui O; Cederbaum AI Arch Biochem Biophys; 1985 Oct; 242(1):187-96. PubMed ID: 2996429 [TBL] [Abstract][Full Text] [Related]
17. Structural determinants for alcohol substrates to be oxidized to formaldehyde by rat liver microsomes. Clejan LA; Cederbaum AI Arch Biochem Biophys; 1992 Oct; 298(1):105-13. PubMed ID: 1524418 [TBL] [Abstract][Full Text] [Related]
18. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
19. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH. Dicker E; Cederbaum AI Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163 [TBL] [Abstract][Full Text] [Related]
20. Oxygen radical generation by microsomes: role of iron and implications for alcohol metabolism and toxicity. Cederbaum AI Free Radic Biol Med; 1989; 7(5):559-67. PubMed ID: 2558984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]