BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18467457)

  • 1. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.
    Morant AV; Bjarnholt N; Kragh ME; Kjaergaard CH; Jørgensen K; Paquette SM; Piotrowski M; Imberty A; Olsen CE; Møller BL; Bak S
    Plant Physiol; 2008 Jul; 147(3):1072-91. PubMed ID: 18467457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S
    Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution.
    Lai D; Abou Hachem M; Robson F; Olsen CE; Wang TL; Møller BL; Takos AM; Rook F
    Plant J; 2014 Jul; 79(2):299-311. PubMed ID: 24861854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging.
    Li B; Knudsen C; Hansen NK; Jørgensen K; Kannangara R; Bak S; Takos A; Rook F; Hansen SH; Møller BL; Janfelt C; Bjarnholt N
    Plant J; 2013 Jun; 74(6):1059-71. PubMed ID: 23551340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.
    Saito S; Motawia MS; Olsen CE; Møller BL; Bak S
    Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.
    Lai D; Pičmanová M; Abou Hachem M; Motawia MS; Olsen CE; Møller BL; Rook F; Takos AM
    Plant Mol Biol; 2015 Sep; 89(1-2):21-34. PubMed ID: 26249044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD; Busk PK; Svendsen I; Møller BL
    J Biol Chem; 2000 Jan; 275(3):1966-75. PubMed ID: 10636899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis.
    Ahn YO; Shimizu B; Sakata K; Gantulga D; Zhou C; Bevan DR; Esen A
    Plant Cell Physiol; 2010 Jan; 51(1):132-43. PubMed ID: 19965874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
    Jørgensen K; Morant AV; Morant M; Jensen NB; Olsen CE; Kannangara R; Motawia MS; Møller BL; Bak S
    Plant Physiol; 2011 Jan; 155(1):282-92. PubMed ID: 21045121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
    Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul).
    Shaik NM; Misra A; Singh S; Fatangare AB; Ramakumar S; Rawal SK; Khan BM
    Mol Biol Rep; 2013 Feb; 40(2):1351-63. PubMed ID: 23079707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis thaliana beta-Glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides.
    Escamilla-Treviño LL; Chen W; Card ML; Shih MC; Cheng CL; Poulton JE
    Phytochemistry; 2006 Aug; 67(15):1651-60. PubMed ID: 16814332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus.
    Chen C; Liu F; Zhang K; Niu X; Zhao H; Liu Q; Georgiev MI; Xu X; Zhang X; Zhou M
    J Exp Bot; 2022 Apr; 73(8):2650-2665. PubMed ID: 35083483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
    Kannangara R; Motawia MS; Hansen NK; Paquette SM; Olsen CE; Møller BL; Jørgensen K
    Plant J; 2011 Oct; 68(2):287-301. PubMed ID: 21736650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass Spectrometry Based Imaging of Labile Glucosides in Plants.
    Bøgeskov Schmidt F; Heskes AM; Thinagaran D; Lindberg Møller B; Jørgensen K; Boughton BA
    Front Plant Sci; 2018; 9():892. PubMed ID: 30002667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the absence of stem-specific β-glucosidases on lignin and monolignols.
    Chapelle A; Morreel K; Vanholme R; Le-Bris P; Morin H; Lapierre C; Boerjan W; Jouanin L; Demont-Caulet N
    Plant Physiol; 2012 Nov; 160(3):1204-17. PubMed ID: 22984124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.