These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18467677)
1. Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to perfluorooctanoic acid. Rosen MB; Abbott BD; Wolf DC; Corton JC; Wood CR; Schmid JE; Das KP; Zehr RD; Blair ET; Lau C Toxicol Pathol; 2008 Jun; 36(4):592-607. PubMed ID: 18467677 [TBL] [Abstract][Full Text] [Related]
2. Comparative hepatic effects of perfluorooctanoic acid and WY 14,643 in PPAR-alpha knockout and wild-type mice. Wolf DC; Moore T; Abbott BD; Rosen MB; Das KP; Zehr RD; Lindstrom AB; Strynar MJ; Lau C Toxicol Pathol; 2008 Jun; 36(4):632-9. PubMed ID: 18467680 [TBL] [Abstract][Full Text] [Related]
3. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Rosen MB; Thibodeaux JR; Wood CR; Zehr RD; Schmid JE; Lau C Toxicology; 2007 Sep; 239(1-2):15-33. PubMed ID: 17681415 [TBL] [Abstract][Full Text] [Related]
4. Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Rosen MB; Lee JS; Ren H; Vallanat B; Liu J; Waalkes MP; Abbott BD; Lau C; Corton JC Toxicol Sci; 2008 May; 103(1):46-56. PubMed ID: 18281256 [TBL] [Abstract][Full Text] [Related]
5. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Guruge KS; Yeung LW; Yamanaka N; Miyazaki S; Lam PK; Giesy JP; Jones PD; Yamashita N Toxicol Sci; 2006 Jan; 89(1):93-107. PubMed ID: 16221955 [TBL] [Abstract][Full Text] [Related]
6. Toxicogenomic analysis of the hepatic effects of perfluorooctanoic acid on rare minnows (Gobiocypris rarus). Wei Y; Liu Y; Wang J; Tao Y; Dai J Toxicol Appl Pharmacol; 2008 Feb; 226(3):285-97. PubMed ID: 17976672 [TBL] [Abstract][Full Text] [Related]
7. Perfluorooctanoic acid induced-developmental cardiotoxicity: are peroxisome proliferator activated receptor α (PPARα) and bone morphorgenic protein 2 (BMP2) pathways involved? Jiang Q; Lust RM; DeWitt JC J Toxicol Environ Health A; 2013; 76(11):635-50. PubMed ID: 23941634 [TBL] [Abstract][Full Text] [Related]
8. Urea cycle gene expression is suppressed by PFOA treatment in rats. Walters MW; Wallace KB Toxicol Lett; 2010 Aug; 197(1):46-50. PubMed ID: 20452409 [TBL] [Abstract][Full Text] [Related]
9. A species difference in the peroxisome proliferator-activated receptor α-dependent response to the developmental effects of perfluorooctanoic acid. Albrecht PP; Torsell NE; Krishnan P; Ehresman DJ; Frame SR; Chang SC; Butenhoff JL; Kennedy GL; Gonzalez FJ; Peters JM Toxicol Sci; 2013 Feb; 131(2):568-82. PubMed ID: 23143925 [TBL] [Abstract][Full Text] [Related]
10. Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor α by perfluoroalkyl carboxylates and sulfonates: estimation of PFOA induction equivalency factors. Ishibashi H; Kim EY; Iwata H Environ Sci Technol; 2011 Apr; 45(7):3123-30. PubMed ID: 21381677 [TBL] [Abstract][Full Text] [Related]
11. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Das KP; Wood CR; Lin MT; Starkov AA; Lau C; Wallace KB; Corton JC; Abbott BD Toxicology; 2017 Mar; 378():37-52. PubMed ID: 28049043 [TBL] [Abstract][Full Text] [Related]
12. Activation of sterol regulatory element-binding proteins in mice exposed to perfluorooctanoic acid for 28 days. Yan S; Wang J; Dai J Arch Toxicol; 2015 Sep; 89(9):1569-78. PubMed ID: 25092180 [TBL] [Abstract][Full Text] [Related]
13. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARα and T- and B-cell targeting. DeWitt JC; Williams WC; Creech NJ; Luebke RW J Immunotoxicol; 2016; 13(1):38-45. PubMed ID: 25594567 [TBL] [Abstract][Full Text] [Related]
14. Expression of a novel cytochrome P450 4T gene in rare minnow (Gobiocypris rarus) following perfluorooctanoic acid exposure. Liu Y; Wang J; Liu Y; Zhang H; Xu M; Dai J Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jul; 150(1):57-64. PubMed ID: 19258050 [TBL] [Abstract][Full Text] [Related]
15. The ubiquitous environmental pollutant perfluorooctanoicacid inhibits feeding behavior via peroxisome proliferator-activated receptor-alpha. Asakawa A; Toyoshima M; Harada KH; Fujimiya M; Inoue K; Koizumi A Int J Mol Med; 2008 Apr; 21(4):439-45. PubMed ID: 18360689 [TBL] [Abstract][Full Text] [Related]
16. The identification of apolipoprotein genes in rare minnow (Gobiocypris rarus) and their expression following perfluorooctanoic acid exposure. Fang X; Wei Y; Liu Y; Wang J; Dai J Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):152-9. PubMed ID: 19800026 [TBL] [Abstract][Full Text] [Related]
17. PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Rosen MB; Das KP; Rooney J; Abbott B; Lau C; Corton JC Toxicology; 2017 Jul; 387():95-107. PubMed ID: 28558994 [TBL] [Abstract][Full Text] [Related]
19. Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Schlezinger JJ; Puckett H; Oliver J; Nielsen G; Heiger-Bernays W; Webster TF Toxicol Appl Pharmacol; 2020 Oct; 405():115204. PubMed ID: 32822737 [TBL] [Abstract][Full Text] [Related]
20. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Wolf CJ; Takacs ML; Schmid JE; Lau C; Abbott BD Toxicol Sci; 2008 Nov; 106(1):162-71. PubMed ID: 18713766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]