BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18467747)

  • 41. Fluidic microstructuring of alginate hydrogels for the single cell niche.
    Braschler T; Valero A; Colella L; Pataky K; Brugger J; Renaud P
    Lab Chip; 2010 Oct; 10(20):2771-7. PubMed ID: 20820482
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wrapping tissues with a pre-established cage-like layer composed of living cells.
    Sakai S; Inagaki H; Inamoto K; Taya M
    Biomaterials; 2012 Oct; 33(28):6721-7. PubMed ID: 22770525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methods for Microencapsulated Porcine Islet Production.
    Shimoda M; Matsumoto S
    Methods Mol Biol; 2017; 1479():347-356. PubMed ID: 27738948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems.
    Bernstein P; Dong M; Corbeil D; Gelinsky M; Günther KP; Fickert S
    Biotechnol Prog; 2009; 25(4):1146-52. PubMed ID: 19572391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell Microencapsulation: Dripping Methods.
    Bidoret A; Martins E; De Smet BP; Poncelet D
    Methods Mol Biol; 2017; 1479():43-55. PubMed ID: 27738925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of alginate encapsulation on NIT-1 insulinoma cells: viability, growth and insulin secretion.
    Bertolotti A; Borgogna M; Facoetti A; Marsich E; Nano R
    In Vivo; 2009; 23(6):929-35. PubMed ID: 20023235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools.
    Rodríguez-Dorado R; Landín M; Altai A; Russo P; Aquino RP; Del Gaudio P
    Int J Pharm; 2018 Mar; 538(1-2):97-104. PubMed ID: 29341917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alginate-based encapsulation of cells: past, present, and future.
    Zimmermann H; Shirley SG; Zimmermann U
    Curr Diab Rep; 2007 Aug; 7(4):314-20. PubMed ID: 17686410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The preservation of islet with alginate encapsulation in the process of transportation.
    Li N; Zhang Y; Xiu Z; Wang Y; Chen L; Wang S; Li S; Guo X; Ma X
    Biotechnol Appl Biochem; 2015; 62(4):530-6. PubMed ID: 25223970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction by TNF-α of IL-6 and IL-8 in cystic fibrosis bronchial IB3-1 epithelial cells encapsulated in alginate microbeads.
    Borgatti M; Mazzitelli S; Breveglieri G; Gambari R; Nastruzzi C
    J Biomed Biotechnol; 2010; 2010():. PubMed ID: 20936184
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications.
    Mazzitelli S; Capretto L; Carugo D; Zhang X; Piva R; Nastruzzi C
    Lab Chip; 2011 May; 11(10):1776-85. PubMed ID: 21472178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of Flow Focusing Technique for Microencapsulation of Myoblasts.
    Ciriza J; Saenz del Burgo L; Hernández RM; Orive G; Pedraz JL
    Methods Mol Biol; 2017; 1479():207-216. PubMed ID: 27738938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microencapsulation of small intestinal neuroendocrine neoplasm cells for tumor model studies.
    Rokstad AM; Gustafsson BI; Espevik T; Bakke I; Pfragner R; Svejda B; Modlin IM; Kidd M
    Cancer Sci; 2012 Jul; 103(7):1230-7. PubMed ID: 22435758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Effects of Ionic Gelation- Vibrational Jet Flow Technique in Fabrication of Microcapsules Incorporating β-cell: Applications in Diabetes.
    Mooranian A; Negrulj R; Al-Salami H
    Curr Diabetes Rev; 2017; 13(1):91-96. PubMed ID: 26710877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of β-cells.
    Mooranian A; Negrulj R; Al-Salami H
    Ther Deliv; 2016; 7(3):171-8. PubMed ID: 26893249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A laboratory-scale device for the straightforward production of uniform, small sized cell microcapsules with long-term cell viability.
    Kontturi LS; Yliperttula M; Toivanen P; Määttä A; Määttä AM; Urtti A
    J Control Release; 2011 Jun; 152(3):376-81. PubMed ID: 21397645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture.
    Ozawa F; Ino K; Arai T; Ramón-Azcón J; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2013 Aug; 13(15):3128-35. PubMed ID: 23764965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymatically fabricated and degradable microcapsules for production of multicellular spheroids with well-defined diameters of less than 150 microm.
    Sakai S; Ito S; Ogushi Y; Hashimoto I; Hosoda N; Sawae Y; Kawakami K
    Biomaterials; 2009 Oct; 30(30):5937-42. PubMed ID: 19656563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A three-dimensional microfluidic approach to scaling up microencapsulation of cells.
    Tendulkar S; Mirmalek-Sani SH; Childers C; Saul J; Opara EC; Ramasubramanian MK
    Biomed Microdevices; 2012 Jun; 14(3):461-9. PubMed ID: 22245953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeted delivery of chemotherapeutic agents using improved radiosensitive liquid core microcapsules and assessment of their antitumor effect.
    Harada S; Ehara S; Ishii K; Yamazaki H; Matsuyama S; Sato T; Oikawa S; Kamiya T; Arakawa K; Yokota W; Sera K; Ito J
    Int J Radiat Oncol Biol Phys; 2009 Oct; 75(2):455-62. PubMed ID: 19735868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.