BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 18467748)

  • 1. Collagen-chitosan nerve guides for peripheral nerve repair: a histomorphometric study.
    Patel M; VandeVord PJ; Matthew HW; De Silva S; Wu B; Wooley PH
    J Biomater Appl; 2008 Sep; 23(2):101-21. PubMed ID: 18467748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GDNF blended chitosan nerve guides: an in vivo study.
    Patel M; Mao L; Wu B; VandeVord P
    J Biomed Mater Res A; 2009 Jul; 90(1):154-65. PubMed ID: 18491398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration.
    Hu X; Huang J; Ye Z; Xia L; Li M; Lv B; Shen X; Luo Z
    Tissue Eng Part A; 2009 Nov; 15(11):3297-308. PubMed ID: 19382873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GDNF-chitosan blended nerve guides: a functional study.
    Patel M; Mao L; Wu B; Vandevord PJ
    J Tissue Eng Regen Med; 2007; 1(5):360-7. PubMed ID: 18038430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration.
    Yang Y; Gu X; Tan R; Hu W; Wang X; Zhang P; Zhang T
    Biotechnol Lett; 2004 Dec; 26(23):1793-7. PubMed ID: 15672216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor.
    Kokai LE; Ghaznavi AM; Marra KG
    Biomaterials; 2010 Mar; 31(8):2313-22. PubMed ID: 19969346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced peripheral nerve regeneration through a poled bioresorbable poly(lactic-co-glycolic acid) guidance channel.
    Bryan DJ; Tang JB; Doherty SA; Hile DD; Trantolo DJ; Wise DL; Summerhayes IC
    J Neural Eng; 2004 Jun; 1(2):91-8. PubMed ID: 15876627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional gait evaluation of collagen chitosan nerve guides for sciatic nerve repair.
    Patel M; Vandevord PJ; Matthew HW; Desilva S; Wu B; Wooley PH
    Tissue Eng Part C Methods; 2008 Dec; 14(4):365-70. PubMed ID: 18817475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulation accelerates motor functional recovery in the rat model of 15-mm sciatic nerve gap bridged by scaffolds with longitudinally oriented microchannels.
    Huang J; Lu L; Hu X; Ye Z; Peng Y; Yan X; Geng D; Luo Z
    Neurorehabil Neural Repair; 2010 Oct; 24(8):736-45. PubMed ID: 20702391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of air plasma in surface modification of peripheral nerve conduits.
    Ni HC; Lin ZY; Hsu SH; Chiu IM
    Acta Biomater; 2010 Jun; 6(6):2066-76. PubMed ID: 20040388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave irradiated collagen tubes as a better matrix for peripheral nerve regeneration.
    Ahmed MR; Vairamuthu S; Shafiuzama M; Basha SH; Jayakumar R
    Brain Res; 2005 Jun; 1046(1-2):55-67. PubMed ID: 15927550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurobiological assessment of regenerative electrodes for bidirectional interfacing injured peripheral nerves.
    Lago N; Udina E; Ramachandran A; Navarro X
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1129-37. PubMed ID: 17554832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new effective scaffold to facilitate peripheral nerve regeneration: chitosan tube coated with maggot homogenate product.
    Zhang Z; Wang S; Tian X; Zhao Z; Zhang J; Lv D
    Med Hypotheses; 2010 Jan; 74(1):12-4. PubMed ID: 19703732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of chitosan scaffolds for repairing rat sciatic nerve defects.
    Simões MJ; Amado S; Gärtner A; Armada-Da-Silva PA; Raimondo S; Vieira M; Luís AL; Shirosaki Y; Veloso AP; Santos JD; Varejão AS; Geuna S; Maurício AC
    Ital J Anat Embryol; 2010; 115(3):190-210. PubMed ID: 21287974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts.
    Katayama Y; Montenegro R; Freier T; Midha R; Belkas JS; Shoichet MS
    Biomaterials; 2006 Jan; 27(3):505-18. PubMed ID: 16125771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization.
    Yao L; Billiar KL; Windebank AJ; Pandit A
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1585-96. PubMed ID: 20528663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves.
    Bozkurt A; Lassner F; O'Dey D; Deumens R; Böcker A; Schwendt T; Janzen C; Suschek CV; Tolba R; Kobayashi E; Sellhaus B; Tholl S; Eummelen L; Schügner F; Damink LO; Weis J; Brook GA; Pallua N
    Biomaterials; 2012 Feb; 33(5):1363-75. PubMed ID: 22082619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FK506 enhances regeneration of axons across long peripheral nerve gaps repaired with collagen guides seeded with allogeneic Schwann cells.
    Udina E; Rodríguez FJ; Verdú E; Espejo M; Gold BG; Navarro X
    Glia; 2004 Aug; 47(2):120-9. PubMed ID: 15185391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration.
    Chang CJ; Hsu SH
    Biomaterials; 2006 Mar; 27(7):1035-42. PubMed ID: 16098582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials for peripheral nerve regeneration.
    Ciardelli G; Chiono V
    Macromol Biosci; 2006 Jan; 6(1):13-26. PubMed ID: 16374766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.