These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 1846857)
1. Aerobic growth and respiration of a delta-aminolevulinic acid synthase (hemA) mutant of Bradyrhizobium japonicum. Frustaci JM; Sangwan I; O'Brian MR J Bacteriol; 1991 Feb; 173(3):1145-50. PubMed ID: 1846857 [TBL] [Abstract][Full Text] [Related]
2. Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. Chauhan S; O'Brian MR J Bacteriol; 1993 Nov; 175(22):7222-7. PubMed ID: 8226669 [TBL] [Abstract][Full Text] [Related]
3. The Rhizobial hemA Gene Is Required for Symbiosis in Species with Deficient [delta]-Aminolevulinic Acid Uptake Activity. McGinnis SD; O'Brian MR Plant Physiol; 1995 Aug; 108(4):1547-1552. PubMed ID: 12228561 [TBL] [Abstract][Full Text] [Related]
4. Identification of the lrp gene in Bradyrhizobium japonicum and its role in regulation of delta-aminolevulinic acid uptake. King ND; O'Brian MR J Bacteriol; 1997 Mar; 179(5):1828-31. PubMed ID: 9045849 [TBL] [Abstract][Full Text] [Related]
5. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. Leong SA; Ditta GS; Helinski DR J Biol Chem; 1982 Aug; 257(15):8724-30. PubMed ID: 7096330 [TBL] [Abstract][Full Text] [Related]
6. Regulation of 5-aminolevulinic acid synthesis in Rhodobacter sphaeroides 2.4.1: the genetic basis of mutant H-5 auxotrophy. Zeilstra-Ryalls JH; Kaplan S J Bacteriol; 1995 May; 177(10):2760-8. PubMed ID: 7751286 [TBL] [Abstract][Full Text] [Related]
7. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Guerinot ML; Chelm BK Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1837-41. PubMed ID: 16593670 [TBL] [Abstract][Full Text] [Related]
8. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional regulation of delta-aminolevulinic acid dehydratase synthesis by oxygen in Bradyrhizobium japonicum and evidence for developmental control of the hemB gene. Chauhan S; O'Brian MR J Bacteriol; 1997 Jun; 179(11):3706-10. PubMed ID: 9171420 [TBL] [Abstract][Full Text] [Related]
10. A mutant Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase with an altered metal requirement functions in situ for tetrapyrrole synthesis in soybean root nodules. Chauhan S; O'Brian MR J Biol Chem; 1995 Aug; 270(34):19823-7. PubMed ID: 7649992 [TBL] [Abstract][Full Text] [Related]
11. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. Neidle EL; Kaplan S J Bacteriol; 1993 Apr; 175(8):2304-13. PubMed ID: 8468291 [TBL] [Abstract][Full Text] [Related]
12. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain. Hornberger U; Liebetanz R; Tichy HV; Drews G Mol Gen Genet; 1990 May; 221(3):371-8. PubMed ID: 2381418 [TBL] [Abstract][Full Text] [Related]
13. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene. Frustaci JM; O'Brian MR J Bacteriol; 1992 Jul; 174(13):4223-9. PubMed ID: 1624416 [TBL] [Abstract][Full Text] [Related]
15. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. van der Werf MJ; Zeikus JG Appl Environ Microbiol; 1996 Oct; 62(10):3560-6. PubMed ID: 8837411 [TBL] [Abstract][Full Text] [Related]
16. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Fu W; Lin J; Cen P Appl Biochem Biotechnol; 2010 Jan; 160(2):456-66. PubMed ID: 18800199 [TBL] [Abstract][Full Text] [Related]
17. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Xie L; Eiteman MA; Altman E Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421 [TBL] [Abstract][Full Text] [Related]
18. Effect of iron availability on expression of the Bradyrhizobium japonicum hemA gene. Page KM; Connolly EL; Guerinot ML J Bacteriol; 1994 Mar; 176(5):1535-8. PubMed ID: 8113199 [TBL] [Abstract][Full Text] [Related]
19. Iron-dependent cytochrome c1 expression is mediated by the status of heme in Bradyrhizobium japonicum. Gao T; O'Brian MR J Bacteriol; 2005 Aug; 187(15):5084-9. PubMed ID: 16030200 [TBL] [Abstract][Full Text] [Related]
20. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Zhang L; Chen J; Chen N; Sun J; Zheng P; Ma Y Biotechnol Lett; 2013 May; 35(5):763-8. PubMed ID: 23338702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]