These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mini-Mu transduction: cis-inhibition of the insertion of Mud transposons. Reyes O; Beyou A; Mignotte-Vieux C; Richaud F Plasmid; 1987 Nov; 18(3):183-92. PubMed ID: 2832860 [TBL] [Abstract][Full Text] [Related]
4. Neighboring plasmid sequences can affect Mini-Mu DNA transposition in the absence of expression of the bacteriophage Mu semi-essential early region. Harel J; DuBow MS Arch Microbiol; 1994; 161(5):418-24. PubMed ID: 8042905 [TBL] [Abstract][Full Text] [Related]
5. Mini-mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing. Groisman EA; Casadaban MJ J Bacteriol; 1986 Oct; 168(1):357-64. PubMed ID: 3020001 [TBL] [Abstract][Full Text] [Related]
6. Transposition studies of mini-Mu plasmids constructed from the chemically synthesized ends of bacteriophage Mu. Patterson TA; Court DL; Dubuc G; Michniewicz JJ; Goodchild J; Bukhari AI; Narang SA Gene; 1986; 50(1-3):101-9. PubMed ID: 3034727 [TBL] [Abstract][Full Text] [Related]
7. Mini-Mu mediates deletion-inversions in vivo by intra-transposon transposition. Leach DR; Okely EA; Percy-Robb MI Mol Microbiol; 1990 Apr; 4(4):561-5. PubMed ID: 2161987 [TBL] [Abstract][Full Text] [Related]
8. The cis-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging. Harel J; Duplessis L; Kahn JS; DuBow MS Arch Microbiol; 1990; 154(1):67-72. PubMed ID: 2168695 [TBL] [Abstract][Full Text] [Related]
9. [Integration of the mini-Mu phage into multicopy plasmids]. Mogutov MA; Kobets NS; Velikodvorskaia GA; Andrianov VM; Piruzian ES Genetika; 1984 Jan; 20(1):16-25. PubMed ID: 6321298 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage Mu sites required for transposition immunity. Darzins A; Kent NE; Buckwalter MS; Casadaban MJ Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6826-30. PubMed ID: 2842794 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of bacteriophage Mu DNA transposition. Chaconas G; Harshey RM; Sarvetnick N; Bukhari AI Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():311-22. PubMed ID: 6271478 [No Abstract] [Full Text] [Related]
12. An efficient DNA sequencing strategy based on the bacteriophage mu in vitro DNA transposition reaction. Haapa S; Suomalainen S; Eerikäinen S; Airaksinen M; Paulin L; Savilahti H Genome Res; 1999 Mar; 9(3):308-15. PubMed ID: 10077537 [TBL] [Abstract][Full Text] [Related]
13. DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition. Groenen MA; Timmers E; van de Putte P Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2087-91. PubMed ID: 2984681 [TBL] [Abstract][Full Text] [Related]
14. Target site selection in transposition of phage Mu. Mizuuchi M; Mizuuchi K Cold Spring Harb Symp Quant Biol; 1993; 58():515-23. PubMed ID: 7956065 [No Abstract] [Full Text] [Related]
15. Transposable Bacteriophages as Genetic Tools. Toussaint A Methods Mol Biol; 2018; 1681():263-278. PubMed ID: 29134601 [TBL] [Abstract][Full Text] [Related]
16. Switch in the transposition products of Mu DNA mediated by proteins: Cointegrates versus simple insertions. Harshey RM Proc Natl Acad Sci U S A; 1983 Apr; 80(7):2012-6. PubMed ID: 6300888 [TBL] [Abstract][Full Text] [Related]
17. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. van Drunen CM; Mientjes E; van Zuylen O; van de Putte P; Goosen N Nucleic Acids Res; 1994 Mar; 22(5):773-9. PubMed ID: 8139917 [TBL] [Abstract][Full Text] [Related]
18. [Genetic analysis of Escherichia coli min81 mutation blocking the development of bacteriophage Mu]. Piruzian ES; Kobets NS; Pavlova GV; Mogutov MA Genetika; 1986 Sep; 22(9):2252-8. PubMed ID: 3021581 [TBL] [Abstract][Full Text] [Related]
19. Association of Mu-containing plasmids with the Escherichia coli chromosome upon prophage induction. Chaconas G; Harshey RM; Bukhari AI Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1778-82. PubMed ID: 6246503 [TBL] [Abstract][Full Text] [Related]
20. Flanking host sequences can exert an inhibitory effect on the cleavage step of the in vitro mu DNA strand transfer reaction. Wu Z; Chaconas G J Biol Chem; 1992 May; 267(14):9552-8. PubMed ID: 1315758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]