These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18469089)

  • 41. Metastable Prepores in Tension-Free Lipid Bilayers.
    Ting CL; Awasthi N; Müller M; Hub JS
    Phys Rev Lett; 2018 Mar; 120(12):128103. PubMed ID: 29694074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Jul; 1838(7):1793-800. PubMed ID: 24680651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation.
    Kong Z; Wang H; Liang L; Zhang Z; Ying S; Hu Q; Shen JW
    J Mol Model; 2017 Apr; 23(4):113. PubMed ID: 28289956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Membrane electroporation: a molecular dynamics simulation.
    Tarek M
    Biophys J; 2005 Jun; 88(6):4045-53. PubMed ID: 15764667
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation.
    Sugar IP; Förster W; Neumann E
    Biophys Chem; 1987 May; 26(2-3):321-35. PubMed ID: 3607233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distribution of pentachlorophenol in phospholipid bilayers: a molecular dynamics study.
    Mukhopadhyay P; Vogel HJ; Tieleman DP
    Biophys J; 2004 Jan; 86(1 Pt 1):337-45. PubMed ID: 14695275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple conductance states of lipid pores during Voltage-Clamp electroporation.
    Gurunian A; Dean DA
    Bioelectrochemistry; 2023 Jun; 151():108396. PubMed ID: 36805203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance.
    Casciola M; Kasimova MA; Rems L; Zullino S; Apollonio F; Tarek M
    Bioelectrochemistry; 2016 Jun; 109():108-16. PubMed ID: 26883056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular dynamics simulations of hydrophilic pores in lipid bilayers.
    Leontiadou H; Mark AE; Marrink SJ
    Biophys J; 2004 Apr; 86(4):2156-64. PubMed ID: 15041656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electroporation based on hydrodynamic focusing of microfluidics with low dc voltage.
    Zhu T; Luo C; Huang J; Xiong C; Ouyang Q; Fang J
    Biomed Microdevices; 2010 Feb; 12(1):35-40. PubMed ID: 19757070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.
    Lebar AM; Troiano GC; Tung L; Miklavcic D
    IEEE Trans Nanobioscience; 2002 Sep; 1(3):116-20. PubMed ID: 16696301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new force field for simulating phosphatidylcholine bilayers.
    Poger D; Van Gunsteren WF; Mark AE
    J Comput Chem; 2010 Apr; 31(6):1117-25. PubMed ID: 19827145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cause and effect of melittin-induced pore formation: a computational approach.
    Manna M; Mukhopadhyay C
    Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Mar; 1838(3):902-9. PubMed ID: 24239610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spontaneous and Stress-Induced Pore Formation in Membranes: Theory, Experiments and Simulations.
    Cunill-Semanat E; Salgado J
    J Membr Biol; 2019 Oct; 252(4-5):241-260. PubMed ID: 31363808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electroporation Mechanisms: The Role of Lipid Orientation in the Kinetics of Pore Formation
    Marracino P; Caramazza L; Liberti M; Apollonio F
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2235-2238. PubMed ID: 33018452
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular dynamics simulations of lipid membrane electroporation.
    Delemotte L; Tarek M
    J Membr Biol; 2012 Sep; 245(9):531-43. PubMed ID: 22644388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.