These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18470003)
1. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Mukai Y; Nakahara Y; Yamamoto M Genome; 1993 Jun; 36(3):489-94. PubMed ID: 18470003 [TBL] [Abstract][Full Text] [Related]
2. Cytogenetics of Triticum x Dasypyrum hybrids and derived lines. Minelli S; Ceccarelli M; Mariani M; De Pace C; Cionini PG Cytogenet Genome Res; 2005; 109(1-3):385-92. PubMed ID: 15753601 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the S-Genomes in Ruban AS; Badaeva ED Front Plant Sci; 2018; 9():1756. PubMed ID: 30564254 [TBL] [Abstract][Full Text] [Related]
4. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Molnár I; Kubaláková M; Šimková H; Farkas A; Cseh A; Megyeri M; Vrána J; Molnár-Láng M; Doležel J Theor Appl Genet; 2014 May; 127(5):1091-104. PubMed ID: 24553964 [TBL] [Abstract][Full Text] [Related]
5. Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Adonina IG; Salina EA; Pestsova EG; Röder MS Genome; 2005 Dec; 48(6):959-70. PubMed ID: 16391665 [TBL] [Abstract][Full Text] [Related]
6. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Badaeva ED; Friebe B; Gill BS Genome; 1996 Apr; 39(2):293-306. PubMed ID: 18469894 [TBL] [Abstract][Full Text] [Related]
7. BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Akhunov ED; Akhunova AR; Dvorák J Theor Appl Genet; 2005 Nov; 111(8):1617-22. PubMed ID: 16177898 [TBL] [Abstract][Full Text] [Related]
8. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids. Schoenenberger N; Felber F; Savova-Bianchi D; Guadagnuolo R Theor Appl Genet; 2005 Nov; 111(7):1338-46. PubMed ID: 16133306 [TBL] [Abstract][Full Text] [Related]
9. Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization. Molnár I; Vrána J; Farkas A; Kubaláková M; Cseh A; Molnár-Láng M; Doležel J Ann Bot; 2015 Aug; 116(2):189-200. PubMed ID: 26043745 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Petersen G; Seberg O; Yde M; Berthelsen K Mol Phylogenet Evol; 2006 Apr; 39(1):70-82. PubMed ID: 16504543 [TBL] [Abstract][Full Text] [Related]
11. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Schneider A; Linc G; Molnár I; Molnár-Láng M Genome; 2005 Dec; 48(6):1070-82. PubMed ID: 16391676 [TBL] [Abstract][Full Text] [Related]
12. Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. King J; Grewal S; Yang CY; Hubbart Edwards S; Scholefield D; Ashling S; Harper JA; Allen AM; Edwards KJ; Burridge AJ; King IP Ann Bot; 2018 Feb; 121(2):229-240. PubMed ID: 29216335 [TBL] [Abstract][Full Text] [Related]
13. RFLP-based analysis of three RbcS subfamilies in diploid and polyploid species of wheat. Galili S; Avivi Y; Millet E; Feldman M Mol Gen Genet; 2000 May; 263(4):674-80. PubMed ID: 10852490 [TBL] [Abstract][Full Text] [Related]
14. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.). Aramrak A; Kidwell KK; Steber CM; Burke IC BMC Genomics; 2015 Oct; 16():844. PubMed ID: 26492960 [TBL] [Abstract][Full Text] [Related]
15. Heterochromatin discrimination in Aegilops speltoides by simultaneous genomic in situ hybridization. Belyayev A; Raskina O Chromosome Res; 1998 Nov; 6(7):559-65. PubMed ID: 9886775 [TBL] [Abstract][Full Text] [Related]
16. Identification of wheat and tritordeum chromosomes by genomic in situ hybridization using total Hordeum chilense DNA as probe. Gonzalez MJ; Cabrera A Genome; 1999 Dec; 42(6):1194-200. PubMed ID: 10659787 [TBL] [Abstract][Full Text] [Related]
17. Characterization of six wheat x Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Han FP; Fedak G; Benabdelmouna A; Armstrong K; Ouellet T Genome; 2003 Jun; 46(3):490-5. PubMed ID: 12834067 [TBL] [Abstract][Full Text] [Related]
18. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum. Liu F; Si H; Wang C; Sun G; Zhou E; Chen C; Ma C Sci Rep; 2016 Aug; 6():31706. PubMed ID: 27526862 [TBL] [Abstract][Full Text] [Related]
19. Introgression of the Li H; Deal KR; Luo MC; Ji W; Distelfeld A; Dvorak J Front Plant Sci; 2017; 8():2163. PubMed ID: 29326749 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat-rye derivatives. Sánchez-Morán E; Benavente E; Orellana J Heredity (Edinb); 1999 Sep; 83 ( Pt 3)():249-52. PubMed ID: 10504421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]