These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18470548)

  • 1. The micromechanics of fluid-solid interactions during growth in porous soft biological tissue.
    Narayanan H; Arruda EM; Grosh K; Garikipati K
    Biomech Model Mechanobiol; 2009 Jun; 8(3):167-81. PubMed ID: 18470548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging.
    Leiderman R; Barbone PE; Oberai AA; Bamber JC
    Phys Med Biol; 2006 Dec; 51(24):6291-313. PubMed ID: 17148819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.
    Vande Geest JP; Simon BR; Rigby PH; Newberg TP
    J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.
    Yang T; Spilker RL
    J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Porous Media Approach to Finite Deformation Behaviour in Soft Tissues.
    Meroi EA; Natali AN; Schrefler BA
    Comput Methods Biomech Biomed Engin; 1999; 2(3):157-170. PubMed ID: 11264825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc.
    Ehlers W; Karajan N; Markert B
    Biomech Model Mechanobiol; 2009 Jun; 8(3):233-51. PubMed ID: 18661285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid and solid mechanics in a poroelastic network induced by ultrasound.
    Wang P; Olbricht WL
    J Biomech; 2011 Jan; 44(1):28-33. PubMed ID: 20817185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between the interstitial fluid and the extracellular matrix in confined indentation.
    Lu Y; Wang W
    J Biomech Eng; 2008 Aug; 130(4):041011. PubMed ID: 18601453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poromechanics of compressible charged porous media using the theory of mixtures.
    Huyghe JM; Molenaar MM; Baajens FP
    J Biomech Eng; 2007 Oct; 129(5):776-85. PubMed ID: 17887904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent formulation of the growth process at the kinematic and constitutive level for soft tissues composed of multiple constituents.
    Schmid H; Pauli L; Paulus A; Kuhl E; Itskov M
    Comput Methods Biomech Biomed Engin; 2012; 15(5):547-61. PubMed ID: 21347909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an analytical model of soft biological tissues.
    Federico S; Herzog W
    J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluids in porous media. I. A hard sponge model.
    Zhao SL; Dong W; Liu QH
    J Chem Phys; 2006 Dec; 125(24):244703. PubMed ID: 17199364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of deformations and electrical potentials in a cartilage substitute.
    Frijns AJ; Huyghe JM; Kaasschieter EF; Wijlaars MW
    Biorheology; 2003; 40(1-3):123-31. PubMed ID: 12454396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution.
    Taylor ZA; Comas O; Cheng M; Passenger J; Hawkes DJ; Atkinson D; Ourselin S
    Med Image Anal; 2009 Apr; 13(2):234-44. PubMed ID: 19019721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.