These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18470760)

  • 61. Further discussion on the design and analysis of thorough QTc clinical trials: guest editors' notes.
    Tsong Y; Zhang J
    J Biopharm Stat; 2010 May; 20(3):493-6. PubMed ID: 20358431
    [No Abstract]   [Full Text] [Related]  

  • 62. Novel concentration-QTc models for early clinical studies with parallel placebo controls: A simulation study.
    Orihashi Y; Kumagai Y; Shiosakai K
    Pharm Stat; 2021 Mar; 20(2):375-389. PubMed ID: 33295138
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hypotheses and type I error in active-control noninferiority trials.
    Chen G; Wang YC; Chi GY
    J Biopharm Stat; 2004 May; 14(2):301-13. PubMed ID: 15206528
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enabling robust assessment of QTc prolongation in early phase clinical trials.
    Mehrotra DV; Fan L; Liu F; Tsai K
    Pharm Stat; 2017 May; 16(3):218-227. PubMed ID: 28374497
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Desflurane's effect on QTc interval: electrophysiological mechanisms need to be explored.
    Venkatesan T
    Anesth Analg; 2006 May; 102(5):1592-3; author reply 1593. PubMed ID: 16632858
    [No Abstract]   [Full Text] [Related]  

  • 66. The Power of Phase I Studies to Detect Clinical Relevant QTc Prolongation: A Resampling Simulation Study.
    Ferber G; Lorch U; Täubel J
    Biomed Res Int; 2015; 2015():293564. PubMed ID: 26509147
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An optimal adaptive design to address local regulations in global clinical trials.
    Luo X; Shih WJ; Ouyang SP; Delap RJ
    Pharm Stat; 2010; 9(3):179-89. PubMed ID: 20872620
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An efficient and robust analysis of covariance model for baseline adjustment in parallel-group thorough QT/QTc studies.
    Lu K
    Stat Med; 2013 Jun; 32(14):2406-18. PubMed ID: 22996035
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thorough QT Studies: Questions and Quandaries.
    Malik M; Garnett CE; Zhang J
    Drug Saf; 2010 Jan; 33(1):1-14. PubMed ID: 20000862
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cardiac risk assessment based on early Phase I data and PK-QTc analysis is concordant with the outcome of thorough QTc trials: an assessment based on eleven drug candidates.
    Gaitonde P; Huh Y; Darpo B; Ferber G; Heimann G; Li J; Lu K; Sebastien B; Tsai K; Riley S
    J Pharmacokinet Pharmacodyn; 2019 Dec; 46(6):617-626. PubMed ID: 31667657
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The New S7B/E14 Question and Answer Draft Guidance for Industry: Contents and Commentary.
    Darpo B; Ferber G
    J Clin Pharmacol; 2021 Oct; 61(10):1261-1273. PubMed ID: 33896027
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of dependent variable, time effect, covariates, and covariation structure in concentration-QTc modeling: A simulation study.
    Huang DP; Xiao S; Dang Q; Tsong Y
    Pharm Stat; 2018 Sep; 17(5):607-614. PubMed ID: 29956449
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Correct the QT interval correctly: QTc should be expressed in the same unit as the QT interval.
    Moss AJ
    Pacing Clin Electrophysiol; 1996 Jun; 19(6):881-2. PubMed ID: 8774816
    [No Abstract]   [Full Text] [Related]  

  • 74. Interdependence of baseline correction method and covariance structure for crossover TQT studies.
    Li W; Maes A; Quinlan M; Anand S
    J Biopharm Stat; 2013; 23(1):82-97. PubMed ID: 23331223
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Incorporating exposure-response modeling into the assessment of QTc interval: A potential alternative to the thorough QT study.
    Bloomfield DM
    Clin Pharmacol Ther; 2015 May; 97(5):444-6. PubMed ID: 25677192
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Concentration-QTc analysis with two or more correlated baselines.
    Orihashi Y; Kumagai Y
    J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):615-622. PubMed ID: 33977390
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design of randomized controlled confirmatory trials using historical control data to augment sample size for concurrent controls.
    Yuan J; Liu J; Zhu R; Lu Y; Palm U
    J Biopharm Stat; 2019; 29(3):558-573. PubMed ID: 30612514
    [TBL] [Abstract][Full Text] [Related]  

  • 78. ICH E14 Q&A(R2) document: commentary on the further updated recommendations on thorough QT studies.
    Shah RR; Morganroth J; Kleiman RB
    Br J Clin Pharmacol; 2015 Mar; 79(3):456-64. PubMed ID: 25060671
    [No Abstract]   [Full Text] [Related]  

  • 79. Quality assessment of digital annotated ECG data from clinical trials by the FDA ECG Warehouse.
    Sarapa N
    Expert Opin Drug Saf; 2007 Sep; 6(5):595-607. PubMed ID: 17877446
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Model averaging inconcentration-QT analyses.
    Sébastien B; Hoffman D; Rigaux C; Pellissier F; Msihid J
    Pharm Stat; 2016 Nov; 15(6):450-458. PubMed ID: 27492846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.