These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 18470921)
1. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Qi X; Ye J; Wang Y J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
3. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F; Li J; Ye J Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739 [TBL] [Abstract][Full Text] [Related]
4. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685 [TBL] [Abstract][Full Text] [Related]
5. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Lee GS; Park JH; Shin US; Kim HW Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944 [TBL] [Abstract][Full Text] [Related]
6. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Smith BT; Lu A; Watson E; Santoro M; Melchiorri AJ; Grosfeld EC; van den Beucken JJJP; Jansen JA; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2018 Sep; 78():341-350. PubMed ID: 30075321 [TBL] [Abstract][Full Text] [Related]
8. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
9. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
10. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626 [TBL] [Abstract][Full Text] [Related]
11. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Huang W; Shi X; Ren L; Du C; Wang Y Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806 [TBL] [Abstract][Full Text] [Related]
12. Calcium phosphate cement scaffolds with PLGA fibers. Vasconcellos LA; dos Santos LA Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1032-40. PubMed ID: 23827539 [TBL] [Abstract][Full Text] [Related]
13. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold. Guan L; Davies JE J Biomed Mater Res A; 2004 Dec; 71(3):480-7. PubMed ID: 15478140 [TBL] [Abstract][Full Text] [Related]
15. Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Qiao P; Wang J; Xie Q; Li F; Dong L; Xu T Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4633-9. PubMed ID: 24094170 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Renno AC; van de Watering FC; Nejadnik MR; Crovace MC; Zanotto ED; Wolke JG; Jansen JA; van den Beucken JJ Acta Biomater; 2013 Mar; 9(3):5728-39. PubMed ID: 23159565 [TBL] [Abstract][Full Text] [Related]
18. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Miao X; Tan DM; Li J; Xiao Y; Crawford R Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297 [TBL] [Abstract][Full Text] [Related]
19. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763 [TBL] [Abstract][Full Text] [Related]
20. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]