These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 18471079)
1. A high-capacity membrane potential FRET-based assay for the sodium-coupled glucose co-transporter SGLT1. Weinglass AB; Swensen AM; Liu J; Schmalhofer W; Thomas A; Williams B; Ross L; Hashizume K; Kohler M; Kaczorowski GJ; Garcia ML Assay Drug Dev Technol; 2008 Apr; 6(2):255-62. PubMed ID: 18471079 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG. Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801 [TBL] [Abstract][Full Text] [Related]
3. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence. Tyagi NK; Goyal P; Kumar A; Pandey D; Siess W; Kinne RK Biochemistry; 2005 Nov; 44(47):15514-24. PubMed ID: 16300400 [TBL] [Abstract][Full Text] [Related]
4. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2. Kanwal A; Singh SP; Grover P; Banerjee SK Anal Biochem; 2012 Oct; 429(1):70-5. PubMed ID: 22796500 [TBL] [Abstract][Full Text] [Related]
5. Structural selectivity of human SGLT inhibitors. Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664 [TBL] [Abstract][Full Text] [Related]
6. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561. Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452 [TBL] [Abstract][Full Text] [Related]
7. Miniaturization and HTS of a FRET-based membrane potential assay for K(ir) channel inhibitors. Solly K; Cassaday J; Felix JP; Garcia ML; Ferrer M; Strulovici B; Kiss L Assay Drug Dev Technol; 2008 Apr; 6(2):225-34. PubMed ID: 18471076 [TBL] [Abstract][Full Text] [Related]
8. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Hummel CS; Lu C; Loo DD; Hirayama BA; Voss AA; Wright EM Am J Physiol Cell Physiol; 2011 Jan; 300(1):C14-21. PubMed ID: 20980548 [TBL] [Abstract][Full Text] [Related]
9. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M; Tomasevic J; Wright EM Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248 [TBL] [Abstract][Full Text] [Related]
10. Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. Pajor AM; Randolph KM; Kerner SA; Smith CD J Pharmacol Exp Ther; 2008 Mar; 324(3):985-91. PubMed ID: 18063724 [TBL] [Abstract][Full Text] [Related]
11. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Castaneda F; Kinne RK Mol Cell Biochem; 2005 Dec; 280(1-2):91-8. PubMed ID: 16311909 [TBL] [Abstract][Full Text] [Related]
12. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207 [TBL] [Abstract][Full Text] [Related]
13. Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators. Trivedi S; Dekermendjian K; Julien R; Huang J; Lund PE; Krupp J; Kronqvist R; Larsson O; Bostwick R Assay Drug Dev Technol; 2008 Apr; 6(2):167-79. PubMed ID: 18078380 [TBL] [Abstract][Full Text] [Related]
14. Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1. Subramanian S; Glitz P; Kipp H; Kinne RK; Castaneda F J Cell Biochem; 2009 Feb; 106(3):444-52. PubMed ID: 19115253 [TBL] [Abstract][Full Text] [Related]
15. Identification of phlorizin binding domains in sodium-glucose cotransporter family: SGLT1 as a unique model system. Raja M; Kinne RK Biochimie; 2015 Aug; 115():187-93. PubMed ID: 26086341 [TBL] [Abstract][Full Text] [Related]
16. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. Kottra G; Daniel H J Pharmacol Exp Ther; 2007 Aug; 322(2):829-35. PubMed ID: 17495124 [TBL] [Abstract][Full Text] [Related]
17. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. Grempler R; Augustin R; Froehner S; Hildebrandt T; Simon E; Mark M; Eickelmann P FEBS Lett; 2012 Feb; 586(3):248-53. PubMed ID: 22212718 [TBL] [Abstract][Full Text] [Related]
18. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/D-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence. Kumar A; Tyagi NK; Kinne RK Biophys Chem; 2007 Apr; 127(1-2):69-77. PubMed ID: 17222499 [TBL] [Abstract][Full Text] [Related]
19. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl-/GABA (hGAT1) cotransporters. Hirayama BA; Díez-Sampedro A; Wright EM Br J Pharmacol; 2001 Oct; 134(3):484-95. PubMed ID: 11588102 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]