BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 18471086)

  • 1. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential formation of covalently bonded hydrogel multilayers through surface initiated photopolymerization.
    Kizilel S; Sawardecker E; Teymour F; Pérez-Luna VH
    Biomaterials; 2006 Mar; 27(8):1209-15. PubMed ID: 16157371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopolymerization of poly(ethylene glycol) diacrylate on eosin-functionalized surfaces.
    Kizilel S; Pérez-Luna VH; Teymour F
    Langmuir; 2004 Sep; 20(20):8652-8. PubMed ID: 15379488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolithographic patterning of polyethylene glycol hydrogels.
    Hahn MS; Taite LJ; Moon JJ; Rowland MC; Ruffino KA; West JL
    Biomaterials; 2006 Apr; 27(12):2519-24. PubMed ID: 16375965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple cell patterning method using magnetic particle-containing photosensitive poly (ethylene glycol) hydrogel blocks: a technical note.
    Fu CY; Lin CY; Chu WC; Chang HY
    Tissue Eng Part C Methods; 2011 Aug; 17(8):871-7. PubMed ID: 21486199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.
    Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L
    Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.
    Dhariwala B; Hunt E; Boland T
    Tissue Eng; 2004; 10(9-10):1316-22. PubMed ID: 15588392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and on-demand gelation of multifunctional poly(ethylene glycol)-based polymers.
    Sokolovskaya E; Barner L; Bräse S; Lahann J
    Macromol Rapid Commun; 2014 Apr; 35(8):780-6. PubMed ID: 24522984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of mechanical and biofunctional gradients in PEG diacrylate hydrogels by perfusion-based frontal photopolymerization.
    Turturro MV; Papavasiliou G
    J Biomater Sci Polym Ed; 2012; 23(7):917-39. PubMed ID: 21477459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography.
    Revzin A; Russell RJ; Yadavalli VK; Koh WG; Deister C; Hile DD; Mellott MB; Pishko MV
    Langmuir; 2001 Sep; 17(18):5440-7. PubMed ID: 12448421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.
    Leslie-Barbick JE; Moon JJ; West JL
    J Biomater Sci Polym Ed; 2009; 20(12):1763-79. PubMed ID: 19723440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use.
    Wu CJ; Wilker JJ; Schmidt G
    Macromol Biosci; 2013 Jan; 13(1):59-66. PubMed ID: 23335554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.