These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18471210)

  • 1. Spatial and temporal influences on bacterial profiling of forensic soil samples.
    Meyers MS; Foran DR
    J Forensic Sci; 2008 May; 53(3):652-60. PubMed ID: 18471210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial profiling of soil using genus-specific markers and multidimensional scaling.
    Lenz EJ; Foran DR
    J Forensic Sci; 2010 Nov; 55(6):1437-42. PubMed ID: 20533986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the potential of bacterial DNA profiling for forensic soil comparisons.
    Heath LE; Saunders VA
    J Forensic Sci; 2006 Sep; 51(5):1062-8. PubMed ID: 17018082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition.
    Macdonald LM; Singh BK; Thomas N; Brewer MJ; Campbell CD; Dawson LA
    J Appl Microbiol; 2008 Sep; 105(3):813-21. PubMed ID: 18429978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of drying-rewetting frequency on soil bacterial community structure.
    Fierer N; Schimel JP; Holden PA
    Microb Ecol; 2003 Jan; 45(1):63-71. PubMed ID: 12469245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial metagenome profiling using amplicon length heterogeneity-polymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens.
    Moreno LI; Mills DK; Entry J; Sautter RT; Mathee K
    J Forensic Sci; 2006 Nov; 51(6):1315-22. PubMed ID: 17199616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons.
    Quaak FC; Kuiper I
    Forensic Sci Int; 2011 Jul; 210(1-3):96-101. PubMed ID: 21377814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of soils at regional and local levels using bacterial and fungal T-RFLP profiling.
    Macdonald CA; Ang R; Cordiner SJ; Horswell J
    J Forensic Sci; 2011 Jan; 56(1):61-9. PubMed ID: 20840292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural divergence of bacterial communities from functionally similar laboratory-scale vermicomposts assessed by PCR-CE-SSCP.
    Sen B; Hamelin J; Bru-Adan V; Godon JJ; Chandra TS
    J Appl Microbiol; 2008 Dec; 105(6):2123-32. PubMed ID: 19120658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in land use alter the structure of bacterial communities in Western Amazon soils.
    da C Jesus E; Marsh TL; Tiedje JM; de S Moreira FM
    ISME J; 2009 Sep; 3(9):1004-11. PubMed ID: 19440233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies.
    Habtom H; Demanèche S; Dawson L; Azulay C; Matan O; Robe P; Gafny R; Simonet P; Jurkevitch E; Pasternak Z
    Forensic Sci Int Genet; 2017 Jan; 26():21-29. PubMed ID: 27750077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils.
    Edel-Hermann V; Dreumont C; Pérez-Piqueres A; Steinberg C
    FEMS Microbiol Ecol; 2004 Mar; 47(3):397-404. PubMed ID: 19712328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal patterns of microbial community structure in the Mid-Atlantic Bight.
    Nelson JD; Boehme SE; Reimers CE; Sherrell RM; Kerkhof LJ
    FEMS Microbiol Ecol; 2008 Sep; 65(3):484-93. PubMed ID: 18662312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization.
    Burke DJ; Kretzer AM; Rygiewicz PT; Topa MA
    FEMS Microbiol Ecol; 2006 Sep; 57(3):409-19. PubMed ID: 16907755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field.
    Franklin RB; Mills AL
    FEMS Microbiol Ecol; 2003 Jun; 44(3):335-46. PubMed ID: 12830827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae).
    Egert M; Marhan S; Wagner B; Scheu S; Friedrich MW
    FEMS Microbiol Ecol; 2004 May; 48(2):187-97. PubMed ID: 19712402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps.
    De la Iglesia R; Castro D; Ginocchio R; van der Lelie D; González B
    J Appl Microbiol; 2006 Mar; 100(3):537-44. PubMed ID: 16478493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual polymerase activity-induced bias in terminal restriction fragment length polymorphism analysis.
    Hartmann M; Enkerli J; Widmer F
    Environ Microbiol; 2007 Feb; 9(2):555-9. PubMed ID: 17222153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culture-independent microbial community analysis with terminal restriction fragment length polymorphism.
    Marsh TL
    Methods Enzymol; 2005; 397():308-29. PubMed ID: 16260299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments.
    Zhang R; Thiyagarajan V; Qian PY
    FEMS Microbiol Ecol; 2008 Jul; 65(1):169-78. PubMed ID: 18503550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.