These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18471212)

  • 1. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential extraction of hydrocarbons from fire debris samples by solid phase microextraction.
    Lloyd JA; Edmiston PL
    J Forensic Sci; 2003 Jan; 48(1):130-4. PubMed ID: 12570213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GC-MS of ignitable liquids using solvent-desorbed SPME for automated analysis.
    Harris AC; Wheeler JF
    J Forensic Sci; 2003 Jan; 48(1):41-6. PubMed ID: 12570197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Headspace sorptive extraction for the detection of combustion accelerants in fire debris.
    Cacho JI; Campillo N; Aliste M; Viñas P; Hernández-Córdoba M
    Forensic Sci Int; 2014 May; 238():26-32. PubMed ID: 24631666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile flavour constituent patterns of Terras Madeirenses red wines extracted by dynamic headspace solid-phase microextraction.
    Perestrelo R; Caldeira M; Rodrigues F; Câmara JS
    J Sep Sci; 2008 Jun; 31(10):1841-50. PubMed ID: 18306209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of methanol in biodiesel by headspace solid phase microextraction.
    Paraschivescu MC; Alley EG; French WT; Hernandez R; Armbrust K
    Bioresour Technol; 2008 Sep; 99(13):5901-5. PubMed ID: 18037289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures.
    Baerncopf JM; McGuffin VL; Smith RW
    J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contemporary Sample Preparation Methods for the Detection of Ignitable Liquids in Suspect Arson Cases.
    Bertsch W; Ren Q
    Forensic Sci Rev; 1999 Dec; 11(2):141-56. PubMed ID: 26255903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes-assisted solid-phase microextraction for the extraction of gasoline in fire debris samples.
    Huang TY; Yu JCC
    J Chromatogr A; 2023 Jul; 1701():464063. PubMed ID: 37201431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of solid-phase microextraction to detect and quantify gas-phase dicarbonyls in indoor environments.
    Pacolay BD; Ham JE; Wells JR
    J Chromatogr A; 2006 Oct; 1131(1-2):275-80. PubMed ID: 16970961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of two commercial solid-phase microextraction fibres for the analysis of target aroma compounds in cooked beef meat.
    Machiels D; Istasse L
    Talanta; 2003 Nov; 61(4):529-37. PubMed ID: 18969215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of SPME and Rapid GC-MS as a Screening Approach for Forensic Fire Debris Applications.
    Capistran BA
    Forensic Chem; 2024 May; 38():. PubMed ID: 38496790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of phenolic acids as chloroformate derivatives using solid phase microextraction-gas chromatography.
    Citová I; Sladkovský R; Solich P
    Anal Chim Acta; 2006 Jul; 573-574():231-41. PubMed ID: 17723529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of impurities and the statistical classification of methamphetamine using headspace solid phase microextraction and gas chromatography-mass spectrometry.
    Kuwayama K; Tsujikawa K; Miyaguchi H; Kanamori T; Iwata Y; Inoue H; Saitoh S; Kishi T
    Forensic Sci Int; 2006 Jun; 160(1):44-52. PubMed ID: 16188412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of alternative fuels from fire debris samples*.
    Kuk RJ; Spagnola MV
    J Forensic Sci; 2008 Sep; 53(5):1123-9. PubMed ID: 18637977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.