BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 18471273)

  • 1. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks.
    Olofsson K; Bertilsson M; Lidén G
    Biotechnol Biofuels; 2008 May; 1(1):7. PubMed ID: 18471273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce.
    Bertilsson M; Olofsson K; Lidén G
    Biotechnol Biofuels; 2009 Apr; 2(1):8. PubMed ID: 19356227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.
    Westman JO; Wang R; Novy V; Franzén CJ
    Biotechnol Biofuels; 2017; 10():213. PubMed ID: 28919926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5.
    Saha BC; Nichols NN; Qureshi N; Cotta MA
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):865-74. PubMed ID: 21968655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature.
    Liu ZH; Qin L; Zhu JQ; Li BZ; Yuan YJ
    Biotechnol Biofuels; 2014; 7(1):167. PubMed ID: 25516770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.
    Unrean P; Khajeeram S; Laoteng K
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2459-70. PubMed ID: 26610806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic ethanol: Technology design and its impact on process efficiency.
    Paulova L; Patakova P; Branska B; Rychtera M; Melzoch K
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1091-107. PubMed ID: 25485865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?
    Cannella D; Jørgensen H
    Biotechnol Bioeng; 2014 Jan; 111(1):59-68. PubMed ID: 24022674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading.
    Saha BC; Nichols NN; Cotta MA
    Bioresour Technol; 2011 Dec; 102(23):10892-7. PubMed ID: 21983410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for synergistic ethanol yield and improved production predictability through blending feedstocks.
    Persson M; Galbe M; Wallberg O
    Biotechnol Biofuels; 2020; 13():156. PubMed ID: 32944072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary engineering of
    Vishnu Prasad J; Sahoo TK; Naveen S; Jayaraman G
    Biotechnol Biofuels; 2020; 13():171. PubMed ID: 33088341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings.
    Qiu J; Tian D; Shen F; Hu J; Zeng Y; Yang G; Zhang Y; Deng S; Zhang J
    Bioresour Technol; 2018 Nov; 268():355-362. PubMed ID: 30096643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production.
    Erdei B; Hancz D; Galbe M; Zacchi G
    Biotechnol Biofuels; 2013 Nov; 6(1):169. PubMed ID: 24286350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production.
    Wang R; Unrean P; Franzén CJ
    Biotechnol Biofuels; 2016; 9():88. PubMed ID: 27096006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production.
    Olofsson K; Wiman M; Lidén G
    J Biotechnol; 2010 Jan; 145(2):168-75. PubMed ID: 19900494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol.
    Wu A; Lee YY
    Appl Biochem Biotechnol; 1998; 70-72():479-92. PubMed ID: 9627393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bioethanol from unwashed-pretreated rapeseed straw at high solid loading.
    Tan L; Zhong J; Jin YL; Sun ZY; Tang YQ; Kida K
    Bioresour Technol; 2020 May; 303():122949. PubMed ID: 32058907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative account of glucose yields and bioethanol production from separate and simultaneous saccharification and fermentation processes at high solids loading with variable PEG concentration.
    Kadhum HJ; Mahapatra DM; Murthy GS
    Bioresour Technol; 2019 Jul; 283():67-75. PubMed ID: 30901590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.
    Varga E; Klinke HB; Réczey K; Thomsen AB
    Biotechnol Bioeng; 2004 Dec; 88(5):567-74. PubMed ID: 15470714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.