These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1847140)

  • 1. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations.
    Surette MG; Harkness T; Chaconas G
    J Biol Chem; 1991 Feb; 266(5):3118-24. PubMed ID: 1847140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the Mu DNA strand cleavage and intramolecular strand transfer reactions by the Mu B protein is independent of stable binding of the Mu B protein to DNA.
    Surette MG; Chaconas G
    J Biol Chem; 1991 Sep; 266(26):17306-13. PubMed ID: 1654329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the A protein-binding sites in the in vitro transposition of mu DNA. A complex circuit of interactions involving the mu ends and the transpositional enhancer.
    Allison RG; Chaconas G
    J Biol Chem; 1992 Oct; 267(28):19963-70. PubMed ID: 1328189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA.
    Surette MG; Buch SJ; Chaconas G
    Cell; 1987 Apr; 49(2):253-62. PubMed ID: 3032448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposition studies of mini-Mu plasmids constructed from the chemically synthesized ends of bacteriophage Mu.
    Patterson TA; Court DL; Dubuc G; Michniewicz JJ; Goodchild J; Bukhari AI; Narang SA
    Gene; 1986; 50(1-3):101-9. PubMed ID: 3034727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-protein cooperativity in the assembly and stabilization of mu strand transfer complex. Relevance of DNA phasing and att site cleavage.
    Namgoong SY; Jayaram M; Kim K; Harshey RM
    J Mol Biol; 1994 May; 238(4):514-27. PubMed ID: 8176742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conserved CA/TG motif at Mu termini: T specifies stable transpososome assembly.
    Lee I; Harshey RM
    J Mol Biol; 2003 Jul; 330(2):261-75. PubMed ID: 12823966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains.
    Leung PC; Harshey RM
    J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mutations in the Mu-host junction region on transpososome assembly.
    Coros CJ; Chaconas G
    J Mol Biol; 2001 Jul; 310(2):299-309. PubMed ID: 11428891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flanking host sequences can exert an inhibitory effect on the cleavage step of the in vitro mu DNA strand transfer reaction.
    Wu Z; Chaconas G
    J Biol Chem; 1992 May; 267(14):9552-8. PubMed ID: 1315758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cis-acting DNA sequences required in vivo for bacteriophage Mu helper-mediated transposition and packaging.
    Harel J; Duplessis L; Kahn JS; DuBow MS
    Arch Microbiol; 1990; 154(1):67-72. PubMed ID: 2168695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu-host junction of the Mu type 1 transpososome.
    Lavoie BD; Chan BS; Allison RG; Chaconas G
    EMBO J; 1991 Oct; 10(10):3051-9. PubMed ID: 1655409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction.
    Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G
    J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNase protection analysis of the stable synaptic complexes involved in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9031-5. PubMed ID: 1656459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac.
    van Drunen CM; Mientjes E; van Zuylen O; van de Putte P; Goosen N
    Nucleic Acids Res; 1994 Mar; 22(5):773-9. PubMed ID: 8139917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition.
    Pathania S; Jayaram M; Harshey RM
    EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions.
    Choi W; Jang S; Harshey RM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14112-7. PubMed ID: 25197059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer.
    Kim K; Namgoong SY; Jayaram M; Harshey RM
    J Biol Chem; 1995 Jan; 270(3):1472-9. PubMed ID: 7836417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of transposase activity within a transpososome by the configuration of the flanking DNA segment of the transposon.
    Mizuuchi M; Rice PA; Wardle SJ; Haniford DB; Mizuuchi K
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14622-7. PubMed ID: 17785414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.