These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 1847140)
21. Characterisation of an IS1 induced mutation in the carboxy-terminal end of bacteriophage Mu transposase which affects several functional domains of the protein. Faelen M; Gama MJ; Toussaint A Biochimie; 1990 Sep; 72(9):697-701. PubMed ID: 2177657 [TBL] [Abstract][Full Text] [Related]
22. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Mizuuchi M; Mizuuchi K Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681 [TBL] [Abstract][Full Text] [Related]
23. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Pathania S; Jayaram M; Harshey RM Cell; 2002 May; 109(4):425-36. PubMed ID: 12086600 [TBL] [Abstract][Full Text] [Related]
24. DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition. Groenen MA; Timmers E; van de Putte P Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2087-91. PubMed ID: 2984681 [TBL] [Abstract][Full Text] [Related]
25. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088 [TBL] [Abstract][Full Text] [Related]
26. Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites. Groenen MA; Vollering M; Krijgsman P; van Drunen K; van de Putte P Nucleic Acids Res; 1987 Nov; 15(21):8831-44. PubMed ID: 2825121 [TBL] [Abstract][Full Text] [Related]
27. Secondary structural features of the bacteriophage Mu-encoded A and B transposition proteins. Chaconas G; McCubbin WD; Kay CM Biochem J; 1989 Oct; 263(1):19-23. PubMed ID: 2557821 [TBL] [Abstract][Full Text] [Related]
28. The phage Mu transpososome core: DNA requirements for assembly and function. Savilahti H; Rice PA; Mizuuchi K EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618 [TBL] [Abstract][Full Text] [Related]
29. Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining. Williams TL; Baker TA J Biol Chem; 2004 Feb; 279(7):5135-45. PubMed ID: 14585843 [TBL] [Abstract][Full Text] [Related]
30. Importance of the conserved CA dinucleotide at Mu termini. Lee I; Harshey RM J Mol Biol; 2001 Nov; 314(3):433-44. PubMed ID: 11846557 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of bacteriophage mu transposition. Mizuuchi K; Craigie R Annu Rev Genet; 1986; 20():385-429. PubMed ID: 3028246 [No Abstract] [Full Text] [Related]
32. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Savilahti H; Mizuuchi K Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279 [TBL] [Abstract][Full Text] [Related]
33. Complete transposition requires four active monomers in the mu transposase tetramer. Baker TA; Kremenstova E; Luo L Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906 [TBL] [Abstract][Full Text] [Related]
34. Crucial role for DNA supercoiling in Mu transposition: a kinetic study. Wang Z; Harshey RM Proc Natl Acad Sci U S A; 1994 Jan; 91(2):699-703. PubMed ID: 8290584 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous expression of a bacteriophage Mu transposase and repressor: a way of preventing killing due to mini-Mu replication. Toussaint A; Expert D; Desmet L Mol Microbiol; 1991 Aug; 5(8):2011-9. PubMed ID: 1662754 [TBL] [Abstract][Full Text] [Related]
36. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Leung PC; Teplow DB; Harshey RM Nature; 1989 Apr; 338(6217):656-8. PubMed ID: 2539564 [TBL] [Abstract][Full Text] [Related]
37. Immunoelectron microscopic analysis of the A, B, and HU protein content of bacteriophage Mu transpososomes. Lavoie BD; Chaconas G J Biol Chem; 1990 Jan; 265(3):1623-7. PubMed ID: 2153137 [TBL] [Abstract][Full Text] [Related]
38. The requirements for a high level of transposition of bacteriophage Mu. Groenen MA; van de Putte P J Cell Sci Suppl; 1987; 7():41-50. PubMed ID: 2846595 [TBL] [Abstract][Full Text] [Related]
39. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). Surette MG; Lavoie BD; Chaconas G EMBO J; 1989 Nov; 8(11):3483-9. PubMed ID: 2555166 [TBL] [Abstract][Full Text] [Related]
40. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Williams TL; Jackson EL; Carritte A; Baker TA Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]