BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

848 related articles for article (PubMed ID: 18471828)

  • 1. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan-BODIPY: a versatile donor-acceptor pair for probing generic changes of intraprotein distances.
    Olofsson M; Kalinin S; Zdunek J; Oliveberg M; Johansson LB
    Phys Chem Chem Phys; 2006 Jul; 8(26):3130-40. PubMed ID: 16804615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9.
    Kuhlman B; Luisi DL; Evans PA; Raleigh DP
    J Mol Biol; 1998 Dec; 284(5):1661-70. PubMed ID: 9878377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-state downhill versus conventional protein folding.
    Ferguson N; Schartau PJ; Sharpe TD; Sato S; Fersht AR
    J Mol Biol; 2004 Nov; 344(2):295-301. PubMed ID: 15522284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cavity-creating mutations on conformational stability and structure of the dimeric 4-alpha-helical protein ROP: thermal unfolding studies.
    Steif C; Hinz HJ; Cesareni G
    Proteins; 1995 Sep; 23(1):83-96. PubMed ID: 8539253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases.
    Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M
    Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural stability and unfolding properties of thermostable bacterial alpha-amylases: a comparative study of homologous enzymes.
    Fitter J; Haber-Pohlmeier S
    Biochemistry; 2004 Aug; 43(30):9589-99. PubMed ID: 15274613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus.
    Knapp S; Karshikoff A; Berndt KD; Christova P; Atanasov B; Ladenstein R
    J Mol Biol; 1996 Dec; 264(5):1132-44. PubMed ID: 9000635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9.
    Sato S; Xiang S; Raleigh DP
    J Mol Biol; 2001 Sep; 312(3):569-77. PubMed ID: 11563917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization.
    Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G
    Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology.
    Li Y; Gupta R; Cho JH; Raleigh DP
    Biochemistry; 2007 Jan; 46(4):1013-21. PubMed ID: 17240985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli.
    Motono C; Yamagishi A; Oshima T
    Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-fast barrier-limited folding in the peripheral subunit-binding domain family.
    Ferguson N; Sharpe TD; Schartau PJ; Sato S; Allen MD; Johnson CM; Rutherford TJ; Fersht AR
    J Mol Biol; 2005 Oct; 353(2):427-46. PubMed ID: 16168437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding.
    Kuhlman B; Boice JA; Fairman R; Raleigh DP
    Biochemistry; 1998 Jan; 37(4):1025-32. PubMed ID: 9454593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes in the transition state of protein folding: alternative interpretations of curved chevron plots.
    Otzen DE; Kristensen O; Proctor M; Oliveberg M
    Biochemistry; 1999 May; 38(20):6499-511. PubMed ID: 10350468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational plasticity in folding of the split beta-alpha-beta protein S6: evidence for burst-phase disruption of the native state.
    Otzen DE; Oliveberg M
    J Mol Biol; 2002 Apr; 317(4):613-27. PubMed ID: 11955013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of trimer-of-hairpins formation by the SIV gp41 envelope protein.
    Jelesarov I; Lu M
    J Mol Biol; 2001 Mar; 307(2):637-56. PubMed ID: 11254387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidic conditions stabilise intermediates populated during the folding of Im7 and Im9.
    Gorski SA; Capaldi AP; Kleanthous C; Radford SE
    J Mol Biol; 2001 Sep; 312(4):849-63. PubMed ID: 11575937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.