These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18471969)

  • 1. DNA polymerases at the replication fork in eukaryotes.
    Stillman B
    Mol Cell; 2008 May; 30(3):259-60. PubMed ID: 18471969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dividing the workload at a eukaryotic replication fork.
    Kunkel TA; Burgers PM
    Trends Cell Biol; 2008 Nov; 18(11):521-7. PubMed ID: 18824354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.
    Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D
    G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic DNA Replication Fork.
    Burgers PMJ; Kunkel TA
    Annu Rev Biochem; 2017 Jun; 86():417-438. PubMed ID: 28301743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerase dynamics at the eukaryotic DNA replication fork.
    Burgers PM
    J Biol Chem; 2009 Feb; 284(7):4041-5. PubMed ID: 18835809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk synthesis and beyond: The roles of eukaryotic replicative DNA polymerases.
    Bainbridge LJ; Daigaku Y
    DNA Repair (Amst); 2024 Sep; 141():103740. PubMed ID: 39096696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing eukaryotic replication asymmetry with replication fidelity.
    Kunkel TA
    Curr Opin Chem Biol; 2011 Oct; 15(5):620-6. PubMed ID: 21862387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Division of labor at the eukaryotic replication fork.
    Nick McElhinny SA; Gordenin DA; Stith CM; Burgers PM; Kunkel TA
    Mol Cell; 2008 Apr; 30(2):137-44. PubMed ID: 18439893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Replication Fork Progression Following Helicase-Polymerase Uncoupling in Eukaryotes.
    Taylor MRG; Yeeles JTP
    J Mol Biol; 2019 May; 431(10):2040-2049. PubMed ID: 30894292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication.
    Zhou ZX; Lujan SA; Burkholder AB; Garbacz MA; Kunkel TA
    Nat Commun; 2019 Sep; 10(1):3992. PubMed ID: 31488849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency.
    Canceill D; Viguera E; Ehrlich SD
    J Biol Chem; 1999 Sep; 274(39):27481-90. PubMed ID: 10488082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins.
    Podust VN; Hübscher U
    Nucleic Acids Res; 1993 Feb; 21(4):841-6. PubMed ID: 8451186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently.
    Yu C; Gan H; Zhang Z
    Mol Cell Biol; 2017 Nov; 37(21):. PubMed ID: 28784720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA.
    Chilkova O; Stenlund P; Isoz I; Stith CM; Grabowski P; Lundström EB; Burgers PM; Johansson E
    Nucleic Acids Res; 2007; 35(19):6588-97. PubMed ID: 17905813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork.
    Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA
    J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segregation of replicative DNA polymerases during S phase: DNA polymerase ε, but not DNA polymerases α/δ, are associated with lamins throughout S phase in human cells.
    Vaara M; Itkonen H; Hillukkala T; Liu Z; Nasheuer HP; Schaarschmidt D; Pospiech H; Syväoja JE
    J Biol Chem; 2012 Sep; 287(40):33327-38. PubMed ID: 22887995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on human DNA polymerase epsilon and GINS complex and their role in DNA replication.
    Bermudez VP; Farina A; Raghavan V; Tappin I; Hurwitz J
    J Biol Chem; 2011 Aug; 286(33):28963-28977. PubMed ID: 21705323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.
    Flood CL; Rodriguez GP; Bao G; Shockley AH; Kow YW; Crouse GF
    PLoS Genet; 2015 Mar; 11(3):e1005049. PubMed ID: 25742645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
    Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z
    Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.