BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18471971)

  • 1. SF2/ASF TORCs up translation.
    Bushell M; Stoneley M; Spriggs KA; Willis AE
    Mol Cell; 2008 May; 30(3):262-3. PubMed ID: 18471971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1.
    Michlewski G; Sanford JR; Cáceres JF
    Mol Cell; 2008 Apr; 30(2):179-89. PubMed ID: 18439897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SF2/ASF regulates proteomic diversity by affecting the balance between translation initiation mechanisms.
    Blaustein M; Quadrana L; Risso G; Mata Mde L; Pelisch F; Srebrow A
    J Cell Biochem; 2009 Jul; 107(4):826-33. PubMed ID: 19441081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The splicing-factor oncoprotein SF2/ASF activates mTORC1.
    Karni R; Hippo Y; Lowe SW; Krainer AR
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15323-7. PubMed ID: 18832178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contribution of the MTOR and MNK pathways to the regulation of mRNA translation in meiotic and postmeiotic mouse male germ cells.
    Messina V; Di Sauro A; Pedrotti S; Adesso L; Latina A; Geremia R; Rossi P; Sette C
    Biol Reprod; 2010 Oct; 83(4):607-15. PubMed ID: 20574055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma.
    Peponi E; Drakos E; Reyes G; Leventaki V; Rassidakis GZ; Medeiros LJ
    Am J Pathol; 2006 Dec; 169(6):2171-80. PubMed ID: 17148679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506.
    Pilch B; Allemand E; Facompré M; Bailly C; Riou JF; Soret J; Tazi J
    Cancer Res; 2001 Sep; 61(18):6876-84. PubMed ID: 11559564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and activity of mTOR and its substrates in different cell cycle phases and in oral squamous cell carcinomas of different malignant grade.
    Liu Y; Hidayat S; Su WH; Deng X; Yu DH; Yu BZ
    Cell Biochem Funct; 2007; 25(1):45-53. PubMed ID: 16927414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation.
    Ellederova Z; Kovarova H; Melo-Sterza F; Livingstone M; Tomek W; Kubelka M
    Mol Reprod Dev; 2006 Jan; 73(1):68-76. PubMed ID: 16211600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro.
    Cao W; Jamison SF; Garcia-Blanco MA
    RNA; 1997 Dec; 3(12):1456-67. PubMed ID: 9404896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs.
    Ma XM; Yoon SO; Richardson CJ; Jülich K; Blenis J
    Cell; 2008 Apr; 133(2):303-13. PubMed ID: 18423201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation.
    Murooka TT; Rahbar R; Fish EN
    Biochem Biophys Res Commun; 2009 Sep; 387(2):381-6. PubMed ID: 19607806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acids as regulators of gene expression at the level of mRNA translation.
    Jefferson LS; Kimball SR
    J Nutr; 2003 Jun; 133(6 Suppl 1):2046S-2051S. PubMed ID: 12771363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid regulation of gene expression.
    Jefferson LS; Kimball SR
    J Nutr; 2001 Sep; 131(9 Suppl):2460S-6S; discussion 2486S-7S. PubMed ID: 11533294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paradigm of kinase-driven pathway downstream of epidermal growth factor receptor/Akt in human lung carcinomas.
    Dobashi Y; Suzuki S; Kimura M; Matsubara H; Tsubochi H; Imoto I; Ooi A
    Hum Pathol; 2011 Feb; 42(2):214-26. PubMed ID: 21040950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.
    Marzec M; Kasprzycka M; Liu X; El-Salem M; Halasa K; Raghunath PN; Bucki R; Wlodarski P; Wasik MA
    Oncogene; 2007 Aug; 26(38):5606-14. PubMed ID: 17353907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF).
    Sun D; Novotny M; Bulek K; Liu C; Li X; Hamilton T
    Nat Immunol; 2011 Aug; 12(9):853-60. PubMed ID: 21822258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways.
    Liu L; Li F; Cardelli JA; Martin KA; Blenis J; Huang S
    Oncogene; 2006 Nov; 25(53):7029-40. PubMed ID: 16715128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size.
    Eguchi S; Tokunaga C; Hidayat S; Oshiro N; Yoshino K; Kikkawa U; Yonezawa K
    Genes Cells; 2006 Jul; 11(7):757-66. PubMed ID: 16824195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins.
    Li BB; Qian C; Gameiro PA; Liu CC; Jiang T; Roberts TM; Struhl K; Zhao JJ
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9325-E9332. PubMed ID: 30224479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.