BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18472554)

  • 21. Kinetics of SO4(-2) reduction under different growth media by sulfate reducing bacteria.
    Mohanty SS; Das T; Mishra SP; Chaudhury GR
    Biometals; 2000 Mar; 13(1):73-6. PubMed ID: 10831227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfate-reducing bacteria in a denitrification reactor packed with wood as a carbon source.
    Yamashita T; Yamamoto-Ikemoto R; Zhu J
    Bioresour Technol; 2011 Feb; 102(3):2235-41. PubMed ID: 21071213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater.
    Van Stempvoort DR; Armstrong J; Mayer B
    J Contam Hydrol; 2007 Jul; 92(3-4):184-207. PubMed ID: 17292997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate.
    Bijmans MF; Peeters TW; Lens PN; Buisman CJ
    Water Res; 2008 May; 42(10-11):2439-48. PubMed ID: 18377946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
    Hulshof AH; Blowes DW; Gould WD
    Water Res; 2006 May; 40(9):1816-26. PubMed ID: 16626781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of 2-chlorophenol via a hydrogenotrophic biofilm under different reductive conditions.
    Chang CC; Tseng SK; Chang CC; Ho CM
    Chemosphere; 2004 Sep; 56(10):989-97. PubMed ID: 15268966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.
    Cruz Viggi C; Pagnanelli F; Cibati A; Uccelletti D; Palleschi C; Toro L
    Water Res; 2010 Jan; 44(1):151-8. PubMed ID: 19804893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using sulfate-amended sediment slurry batch reactors to evaluate mercury methylation.
    Harmon SM; King JK; Gladden JB; Newman LA
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):326-31. PubMed ID: 17384981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor.
    Chung J; Ahn CH; Chen Z; Rittmann BE
    Chemosphere; 2008 Jan; 70(3):516-20. PubMed ID: 17720217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of population dynamics in sulfate-reducing consortia on exposure to sulfate.
    Icgen B; Harrison S
    Res Microbiol; 2006 Dec; 157(10):922-7. PubMed ID: 17008063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Marine SRB community reducing sulfate wastewater in flue gas desulfurization].
    Pan JC; Cao HB; Shao ZZ; Sheng YX; Zhang Y
    Huan Jing Ke Xue; 2009 Feb; 30(2):504-9. PubMed ID: 19402507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas phase H(2)S product recovery in a packed bed bioreactor with immobilized sulfate-reducing bacteria.
    McMahon MJ; Daugulis AJ
    Biotechnol Lett; 2008 Mar; 30(3):467-73. PubMed ID: 17972017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria.
    Pombo SA; Kleikemper J; Schroth MH; Zeyer J
    FEMS Microbiol Ecol; 2005 Jan; 51(2):197-207. PubMed ID: 16329868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphate removal and sulfate reduction in a denitrification reactor packed with iron and wood as electron donors.
    Yamashita T; Yamamoto-Ikemoto R
    Water Sci Technol; 2008; 58(7):1405-13. PubMed ID: 18957753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration.
    Ontiveros-Valencia A; Tang Y; Krajmalnik-Brown R; Rittmann BE
    Water Res; 2014 May; 55():215-24. PubMed ID: 24607522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal precipitation in an ethanol-fed, fixed-bed sulphate-reducing bioreactor.
    Kousi P; Remoundaki E; Hatzikioseyian A; Battaglia-Brunet F; Joulian C; Kousteni V; Tsezos M
    J Hazard Mater; 2011 May; 189(3):677-84. PubMed ID: 21316850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. H2 enrichment from synthesis gas by Desulfotomaculum carboxydivorans for potential applications in synthesis gas purification and biodesulfurization.
    Sipma J; Osuna MB; Parshina SN; Lettinga G; Stams AJ; Lens PN
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):339-47. PubMed ID: 17583809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors.
    Suárez JI; Aybar M; Nancucheo I; Poch B; Martínez P; Rittmann BE; Schwarz A
    Chemosphere; 2020 Apr; 244():125508. PubMed ID: 31812042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron donors for biological sulfate reduction.
    Liamleam W; Annachhatre AP
    Biotechnol Adv; 2007; 25(5):452-63. PubMed ID: 17572039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.