These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18473060)

  • 1. Quantum dot probes for bacteria distinguish Escherichia coli mutants and permit in vivo imaging.
    Leevy WM; Lambert TN; Johnson JR; Morris J; Smith BD
    Chem Commun (Camb); 2008 May; (20):2331-3. PubMed ID: 18473060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe.
    Leevy WM; Gammon ST; Jiang H; Johnson JR; Maxwell DJ; Jackson EN; Marquez M; Piwnica-Worms D; Smith BD
    J Am Chem Soc; 2006 Dec; 128(51):16476-7. PubMed ID: 17177377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots.
    Swift JL; Heuff R; Cramb DT
    Biophys J; 2006 Feb; 90(4):1396-410. PubMed ID: 16299079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic behavior of streptavidin complexed to a biotinylated probe: a functional screening assay for biotin-binding proteins.
    Humbert N; Zocchi A; Ward TR
    Electrophoresis; 2005 Jan; 26(1):47-52. PubMed ID: 15624156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on acedan-based mononuclear zinc complexes toward selective fluorescent probes for pyrophosphate.
    Rao AS; Singha S; Choi W; Ahn KH
    Org Biomol Chem; 2012 Nov; 10(42):8410-7. PubMed ID: 23001147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HaloTag protein-mediated specific labeling of living cells with quantum dots.
    So MK; Yao H; Rao J
    Biochem Biophys Res Commun; 2008 Sep; 374(3):419-23. PubMed ID: 18621022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot encapsulated nanocolloidal bioconjugates function as bioprobes for in vitro intracellular imaging.
    Muralidhara S; Malu K; Gaines P; Budhlall BM
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110348. PubMed ID: 31301579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot-fluorescence in situ hybridisation for Ectromelia virus detection based on biotin-streptavidin interactions.
    Wang T; Zheng Z; Zhang XE; Wang H
    Talanta; 2016 Sep; 158():179-184. PubMed ID: 27343592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
    Mason JN; Tomlinson ID; Rosenthal SJ; Blakely RD
    Methods Mol Biol; 2005; 303():35-50. PubMed ID: 15923673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time imaging of bacteria in living mice using a fluorescent dye.
    Hope-Roberts M; Wainwright M; Horobin RW
    Biotech Histochem; 2011 Apr; 86(2):104-7. PubMed ID: 20608773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotinylated-spiperone ligands for quantum dot labeling of the dopamine D2 receptor in live cell cultures.
    Tomlinson ID; Kovtun O; Crescentini TM; Rosenthal SJ
    Bioorg Med Chem Lett; 2019 Apr; 29(8):959-964. PubMed ID: 30808590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.
    Wu Y; Campos SK; Lopez GP; Ozbun MA; Sklar LA; Buranda T
    Anal Biochem; 2007 May; 364(2):180-92. PubMed ID: 17397793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging.
    Ye F; Wu C; Jin Y; Wang M; Chan YH; Yu J; Sun W; Hayden S; Chiu DT
    Chem Commun (Camb); 2012 Feb; 48(12):1778-80. PubMed ID: 22218705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.
    Wu SM; Zhao X; Zhang ZL; Xie HY; Tian ZQ; Peng J; Lu ZX; Pang DW; Xie ZX
    Chemphyschem; 2006 May; 7(5):1062-7. PubMed ID: 16625674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiplasmodial activity of targeted zinc(II)-dipicolylamine complexes.
    Rice DR; de Lourdes Betancourt Mendiola M; Murillo-Solano C; Checkley LA; Ferdig MT; Pizarro JC; Smith BD
    Bioorg Med Chem; 2017 May; 25(10):2754-2760. PubMed ID: 28377170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc(II)-Dipicolylamine Analogs Mediated PEI1.8k/pDNA Vector: Effect of Ligand Structure on the Gene Transport Process.
    Jia H; Wang X; Chen Z; Liu S; Zhou T; Zhou H; Guo T
    Macromol Biosci; 2021 Jun; 21(6):e2100048. PubMed ID: 33861507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S; Bouzigues C; Luccardini C; Ehrensperger MV; Bonneau S; Dahan M
    Methods Enzymol; 2006; 414():211-28. PubMed ID: 17110194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels.
    Ding Y; Liu X; Zhu J; Wang L; Jiang W
    Talanta; 2014 Jul; 125():393-9. PubMed ID: 24840462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.