These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18473394)

  • 1. Threading without optimizing weighting factors for scoring function.
    Yang YD; Park C; Kihara D
    Proteins; 2008 Nov; 73(3):581-96. PubMed ID: 18473394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein structure prediction by threading. Why it works and why it does not.
    Mirny LA; Shakhnovich EI
    J Mol Biol; 1998 Oct; 283(2):507-26. PubMed ID: 9769221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bootstrap-based consensus scoring method for protein-ligand docking.
    Fukunishi H; Teramoto R; Takada T; Shimada J
    J Chem Inf Model; 2008 May; 48(5):988-96. PubMed ID: 18426197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.
    Zou L; Wang Z; Huang J
    J Genet Genomics; 2007 Dec; 34(12):1080-7. PubMed ID: 18155620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defrosting the frozen approximation: PROSPECTOR--a new approach to threading.
    Skolnick J; Kihara D
    Proteins; 2001 Feb; 42(3):319-31. PubMed ID: 11151004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading.
    Lu L; Lu H; Skolnick J
    Proteins; 2002 Nov; 49(3):350-64. PubMed ID: 12360525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.
    Bar-Haim S; Aharon A; Ben-Moshe T; Marantz Y; Senderowitz H
    J Chem Inf Model; 2009 Mar; 49(3):623-33. PubMed ID: 19231809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of example weights on prediction of protein-protein interactions.
    Li MH; Wang XL; Lin L; Liu T
    Comput Biol Chem; 2006 Oct; 30(5):386-92. PubMed ID: 16978924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D; Gohlke H
    J Chem Inf Model; 2009 Oct; 49(10):2260-71. PubMed ID: 19795907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Averaging interaction energies over homologs improves protein fold recognition in gapless threading.
    Reva BA; Skolnick J; Finkelstein AV
    Proteins; 1999 May; 35(3):353-9. PubMed ID: 10328270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of pseudonative protein structures for threading.
    Hamprecht FA; Scott W; van Gunsteren WF
    Proteins; 1997 Aug; 28(4):522-9. PubMed ID: 9261868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking of dimeric threading and structure refinement.
    Grimm V; Zhang Y; Skolnick J
    Proteins; 2006 May; 63(3):457-65. PubMed ID: 16463265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fold recognition aided by constraints from small angle X-ray scattering data.
    Zheng W; Doniach S
    Protein Eng Des Sel; 2005 May; 18(5):209-19. PubMed ID: 15845555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving fold recognition of protein threading by experimental distance constraints.
    Albrecht M; Hanisch D; Zimmer R; Lengauer T
    In Silico Biol; 2002; 2(3):325-37. PubMed ID: 12542417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.
    Hawkins T; Chitale M; Luban S; Kihara D
    Proteins; 2009 Feb; 74(3):566-82. PubMed ID: 18655063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein subcellular localization by weighted gene ontology terms.
    Chi SM
    Biochem Biophys Res Commun; 2010 Aug; 399(3):402-5. PubMed ID: 20678488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.