These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 1847341)
1. Rapid purification of protein phosphatase 2A from mouse brain by microcystin-affinity chromatography. Nishiwaki S; Fujiki H; Suganuma M; Nishiwaki-Matsushima R; Sugimura T FEBS Lett; 1991 Feb; 279(1):115-8. PubMed ID: 1847341 [TBL] [Abstract][Full Text] [Related]
2. Purification of type 1 protein (serine/threonine) phosphatases by microcystin-Sepharose affinity chromatography. Moorhead G; MacKintosh RW; Morrice N; Gallagher T; MacKintosh C FEBS Lett; 1994 Dec; 356(1):46-50. PubMed ID: 7988718 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and use of the protein phosphatase affinity matrices microcystin-sepharose and microcystin-biotin-sepharose. Moorhead GB; Haystead TA; MacKintosh C Methods Mol Biol; 2007; 365():39-45. PubMed ID: 17200552 [TBL] [Abstract][Full Text] [Related]
4. Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2A(C), PP4(C), and PP6(C)) and analysis of the interaction of PP2A(C) with alpha4 protein. Kloeker S; Reed R; McConnell JL; Chang D; Tran K; Westphal RS; Law BK; Colbran RJ; Kamoun M; Campbell KS; Wadzinski BE Protein Expr Purif; 2003 Sep; 31(1):19-33. PubMed ID: 12963337 [TBL] [Abstract][Full Text] [Related]
5. Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. Toivola DM; Eriksson JE; Brautigan DL FEBS Lett; 1994 May; 344(2-3):175-80. PubMed ID: 8187879 [TBL] [Abstract][Full Text] [Related]
6. Okadaic acid and microcystin-LR directly inhibit the methylation of protein phosphatase 2A by its specific methyltransferase. Li M; Damuni Z Biochem Biophys Res Commun; 1994 Jul; 202(2):1023-30. PubMed ID: 8048914 [TBL] [Abstract][Full Text] [Related]
7. Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. Moorhead G; MacKintosh C; Morrice N; Cohen P FEBS Lett; 1995 Apr; 362(2):101-5. PubMed ID: 7720853 [TBL] [Abstract][Full Text] [Related]
8. A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A. Bagu JR; Sykes BD; Craig MM; Holmes CF J Biol Chem; 1997 Feb; 272(8):5087-97. PubMed ID: 9030574 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases. Craig M; Luu HA; McCready TL; Williams D; Andersen RJ; Holmes CF Biochem Cell Biol; 1996; 74(4):569-78. PubMed ID: 8960363 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of the catalytic subunit of protein phosphatase 2A from Neurospora crassa. Szöör B; Fehér Z; Bakó E; Erdödi F; Szabó G; Gergely P; Dombrádi V Comp Biochem Physiol B Biochem Mol Biol; 1995 Nov; 112(3):515-22. PubMed ID: 8529028 [TBL] [Abstract][Full Text] [Related]
11. Microcystin affinity purification of plant protein phosphatases: PP1C, PP5 and a regulatory A-subunit of PP2A. Meek S; Morrice N; MacKintosh C FEBS Lett; 1999 Sep; 457(3):494-8. PubMed ID: 10471836 [TBL] [Abstract][Full Text] [Related]
12. Identification of protein phosphatase-1-binding proteins by microcystin-biotin affinity chromatography. Campos M; Fadden P; Alms G; Qian Z; Haystead TA J Biol Chem; 1996 Nov; 271(45):28478-84. PubMed ID: 8910475 [TBL] [Abstract][Full Text] [Related]
13. Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits. Prickett TD; Brautigan DL J Biol Chem; 2004 Sep; 279(37):38912-20. PubMed ID: 15252037 [TBL] [Abstract][Full Text] [Related]
14. Purification and partial characterization of protein phosphatases from rat thymus. Bakó E; Dombrádi V; Erdödi F; Zumo L; Kertai P; Gergely P Biochim Biophys Acta; 1989 Oct; 1013(3):300-5. PubMed ID: 2553107 [TBL] [Abstract][Full Text] [Related]
15. Characterization of multiple molecular forms of Mg(2+)-dependent protein phosphatase from Saccharomyces cerevisiae. Murakami T; Kobayashi T; Terasawa T; Ohnishi M; Kato S; Sasahara Y; Itoh M; Nakano T; Tamura S J Biochem; 1994 Apr; 115(4):762-6. PubMed ID: 8089094 [TBL] [Abstract][Full Text] [Related]
16. Effects of microcystins on phosphorylase-a binding to phosphatase-2A: kinetic analysis by surface plasmon resonance biosensor. Yang M; Lam PK; Huang M; Wong BS Biochim Biophys Acta; 1999 Mar; 1427(1):62-73. PubMed ID: 10206668 [TBL] [Abstract][Full Text] [Related]
17. Purification and properties of Arabidopsis thaliana type 1 protein phosphatase (PP1). Stubbs MD; Tran HT; Atwell AJ; Smith CS; Olson D; Moorhead GB Biochim Biophys Acta; 2001 Nov; 1550(1):52-63. PubMed ID: 11738087 [TBL] [Abstract][Full Text] [Related]
18. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Honkanen RE; Zwiller J; Moore RE; Daily SL; Khatra BS; Dukelow M; Boynton AL J Biol Chem; 1990 Nov; 265(32):19401-4. PubMed ID: 2174036 [TBL] [Abstract][Full Text] [Related]
19. Identification of soluble protein phosphatases that dephosphorylate voltage-sensitive sodium channels in rat brain. Chen TC; Law B; Kondratyuk T; Rossie S J Biol Chem; 1995 Mar; 270(13):7750-6. PubMed ID: 7706324 [TBL] [Abstract][Full Text] [Related]
20. Sucrose-phosphate synthase is dephosphorylated by protein phosphatase 2A in spinach leaves. Evidence from the effects of okadaic acid and microcystin. Siegl G; MacKintosh C; Stitt M FEBS Lett; 1990 Sep; 270(1-2):198-202. PubMed ID: 2171989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]