BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18473481)

  • 1. Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity.
    Joyce CM; Potapova O; Delucia AM; Huang X; Basu VP; Grindley ND
    Biochemistry; 2008 Jun; 47(23):6103-16. PubMed ID: 18473481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue.
    Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D
    Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.
    Astatke M; Grindley ND; Joyce CM
    J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
    Rothwell PJ; Mitaksov V; Waksman G
    Mol Cell; 2005 Aug; 19(3):345-55. PubMed ID: 16061181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prechemistry nucleotide selection checkpoints in the reaction pathway of DNA polymerase I and roles of glu710 and tyr766.
    Bermek O; Grindley ND; Joyce CM
    Biochemistry; 2013 Sep; 52(36):6258-74. PubMed ID: 23937394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis.
    Lam WC; Van der Schans EJ; Sowers LC; Millar DP
    Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism.
    Sawaya MR; Prasad R; Wilson SH; Kraut J; Pelletier H
    Biochemistry; 1997 Sep; 36(37):11205-15. PubMed ID: 9287163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex.
    Srivastava A; Singh K; Modak MJ
    Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA polymerase beta: multiple conformational changes in the mechanism of catalysis.
    Zhong X; Patel SS; Werneburg BG; Tsai MD
    Biochemistry; 1997 Sep; 36(39):11891-900. PubMed ID: 9305982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis.
    Lone S; Romano LJ
    Biochemistry; 2003 Apr; 42(13):3826-34. PubMed ID: 12667073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly.
    Yang L; Arora K; Beard WA; Wilson SH; Schlick T
    J Am Chem Soc; 2004 Jul; 126(27):8441-53. PubMed ID: 15238001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment).
    Lam WC; Van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified kinetic mechanism applicable to multiple DNA polymerases.
    Bakhtina M; Roettger MP; Kumar S; Tsai MD
    Biochemistry; 2007 May; 46(18):5463-72. PubMed ID: 17419590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4.
    Wong JH; Fiala KA; Suo Z; Ling H
    J Mol Biol; 2008 May; 379(2):317-30. PubMed ID: 18448122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.