BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18473481)

  • 21. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis.
    Turner RM; Grindley ND; Joyce CM
    Biochemistry; 2003 Mar; 42(8):2373-85. PubMed ID: 12600204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational transitions in DNA polymerase I revealed by single-molecule FRET.
    Santoso Y; Joyce CM; Potapova O; Le Reste L; Hohlbein J; Torella JP; Grindley ND; Kapanidis AN
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):715-20. PubMed ID: 20080740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prokaryotic DNA polymerase I: evolution, structure, and "base flipping" mechanism for nucleotide selection.
    Patel PH; Suzuki M; Adman E; Shinkai A; Loeb LA
    J Mol Biol; 2001 May; 308(5):823-37. PubMed ID: 11352575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct roles of the active-site Mg2+ ligands, Asp882 and Asp705, of DNA polymerase I (Klenow fragment) during the prechemistry conformational transitions.
    Bermek O; Grindley ND; Joyce CM
    J Biol Chem; 2011 Feb; 286(5):3755-66. PubMed ID: 21084297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Affinity modification of DNA polymerase I from Escherichia coli and its Klenow fragment with nucleotide imidazolides].
    Doronin SV; Nevinskiĭ GA; Khomov VV; Lavrik OI
    Mol Biol (Mosk); 1991; 25(2):358-67. PubMed ID: 1881393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of the reverse rate of the conformational step to polymerase beta fidelity.
    Bakhtina M; Roettger MP; Tsai MD
    Biochemistry; 2009 Apr; 48(14):3197-208. PubMed ID: 19231836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment).
    Astatke M; Grindley ND; Joyce CM
    J Biol Chem; 1995 Jan; 270(4):1945-54. PubMed ID: 7829532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV.
    Fiala KA; Suo Z
    Biochemistry; 2004 Feb; 43(7):2116-25. PubMed ID: 14967051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1.
    Rothwell PJ; Waksman G
    J Biol Chem; 2007 Sep; 282(39):28884-28892. PubMed ID: 17640877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational transition pathway of polymerase beta/DNA upon binding correct incoming substrate.
    Arora K; Schlick T
    J Phys Chem B; 2005 Mar; 109(11):5358-67. PubMed ID: 16863202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal.
    Kiefer JR; Mao C; Braman JC; Beese LS
    Nature; 1998 Jan; 391(6664):304-7. PubMed ID: 9440698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. dNTP-dependent conformational transitions in the fingers subdomain of Klentaq1 DNA polymerase: insights into the role of the "nucleotide-binding" state.
    Rothwell PJ; Allen WJ; Sisamakis E; Kalinin S; Felekyan S; Widengren J; Waksman G; Seidel CA
    J Biol Chem; 2013 May; 288(19):13575-91. PubMed ID: 23525110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.
    Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I.
    Berezhna SY; Gill JP; Lamichhane R; Millar DP
    J Am Chem Soc; 2012 Jul; 134(27):11261-8. PubMed ID: 22650319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I.
    Kretulskie AM; Spratt TE
    Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using single-molecule FRET to probe the nucleotide-dependent conformational landscape of polymerase β-DNA complexes.
    Fijen C; Mahmoud MM; Kronenberg M; Kaup R; Fontana M; Towle-Weicksel JB; Sweasy JB; Hohlbein J
    J Biol Chem; 2020 Jul; 295(27):9012-9020. PubMed ID: 32385112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.