These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18473669)

  • 81. Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens.
    Tang J; Bai J; Chen X; Zheng L; Liu H; Huang J
    Curr Genet; 2020 Apr; 66(2):409-420. PubMed ID: 31489464
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation.
    Babazadeh R; Furukawa T; Hohmann S; Furukawa K
    Sci Rep; 2014 Apr; 4():4697. PubMed ID: 24732094
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus.
    Lin CH; Yang SL; Chung KR
    Mol Plant Microbe Interact; 2009 Aug; 22(8):942-52. PubMed ID: 19589070
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen.
    Day AM; Herrero-de-Dios CM; MacCallum DM; Brown AJP; Quinn J
    Sci Rep; 2017 Oct; 7(1):14340. PubMed ID: 29085028
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Map kinases in fungal pathogens.
    Xu JR
    Fungal Genet Biol; 2000 Dec; 31(3):137-52. PubMed ID: 11273677
    [TBL] [Abstract][Full Text] [Related]  

  • 86. CPR1: a gene encoding a putative signal peptidase that functions in pathogenicity of Colletotrichum graminicola to maize.
    Thon MR; Nuckles EM; Takach JE; Vaillancourt LJ
    Mol Plant Microbe Interact; 2002 Feb; 15(2):120-8. PubMed ID: 11876424
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica.
    Choi ES; Chung HJ; Kim MJ; Park SM; Cha BJ; Yang MS; Kim DH
    Microbiology (Reading); 2005 May; 151(Pt 5):1349-1358. PubMed ID: 15870445
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.
    Simaan H; Shalaby S; Hatoel M; Karinski O; Goldshmidt-Tran O; Horwitz BA
    Curr Genet; 2020 Feb; 66(1):187-203. PubMed ID: 31312934
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Global insight into the distribution of velvet-like B protein in Cochliobolus species and implication in pathogenicity and fungicide resistance.
    Bengyella L
    World J Microbiol Biotechnol; 2018 Dec; 34(12):187. PubMed ID: 30506400
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Redox Regulation, Rather than Stress-Induced Phosphorylation, of a Hog1 Mitogen-Activated Protein Kinase Modulates Its Nitrosative-Stress-Specific Outputs.
    Herrero-de-Dios C; Day AM; Tillmann AT; Kastora SL; Stead D; Salgado PS; Quinn J; Brown AJP
    mBio; 2018 Mar; 9(2):. PubMed ID: 29588408
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Isolation of cDNA sequences encoding the MAP kinase HOG1 and the MAP kinase kinase PBS2 genes of the fungus Alternaria tenuissima through a genetic approach.
    Feng F; Qiu D; Jiang L
    J Microbiol Methods; 2007 Apr; 69(1):188-96. PubMed ID: 17306900
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Os2 MAP kinase-mediated osmostress tolerance in Penicillium digitatum is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis.
    Wang M; Chen C; Zhu C; Sun X; Ruan R; Li H
    Microbiol Res; 2014; 169(7-8):511-21. PubMed ID: 24439827
    [TBL] [Abstract][Full Text] [Related]  

  • 93. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii.
    Chen X; Xu C; Qian Y; Liu R; Zhang Q; Zeng G; Zhang X; Zhao H; Fang W
    Environ Microbiol; 2016 Mar; 18(3):1048-62. PubMed ID: 26714892
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cpkk1, MAPKK of Cryphonectria parasitica, is necessary for virulence on chestnut.
    Rostagno L; Prodi A; Turina M
    Phytopathology; 2010 Oct; 100(10):1100-10. PubMed ID: 20839945
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A novel Ras GTPase (Ras3) regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana.
    Guan Y; Wang DY; Ying SH; Feng MG
    Fungal Genet Biol; 2015 Sep; 82():85-94. PubMed ID: 26162967
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans.
    Enjalbert B; Smith DA; Cornell MJ; Alam I; Nicholls S; Brown AJ; Quinn J
    Mol Biol Cell; 2006 Feb; 17(2):1018-32. PubMed ID: 16339080
    [TBL] [Abstract][Full Text] [Related]  

  • 97. RAS2 regulates growth and pathogenesis in Fusarium graminearum.
    Bluhm BH; Zhao X; Flaherty JE; Xu JR; Dunkle LD
    Mol Plant Microbe Interact; 2007 Jun; 20(6):627-36. PubMed ID: 17555271
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mutational analysis of beta-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum.
    Kim H; Ahn JH; Görlach JM; Caprari C; Scott-Craig JS; Walton JD
    Mol Plant Microbe Interact; 2001 Dec; 14(12):1436-43. PubMed ID: 11768539
    [TBL] [Abstract][Full Text] [Related]  

  • 99. MAP kinase pathways as regulators of fungal virulence.
    Román E; Arana DM; Nombela C; Alonso-Monge R; Pla J
    Trends Microbiol; 2007 Apr; 15(4):181-90. PubMed ID: 17321137
    [TBL] [Abstract][Full Text] [Related]  

  • 100. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum.
    Jin K; Han L; Xia Y
    J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.