BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 18473844)

  • 21. Advanced glycation end products and the progressive course of renal disease.
    Heidland A; Sebekova K; Schinzel R
    Am J Kidney Dis; 2001 Oct; 38(4 Suppl 1):S100-6. PubMed ID: 11576932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis.
    Maeda S; Matsui T; Takeuchi M; Yoshida Y; Yamakawa R; Fukami K; Yamagishi S
    Pharmacol Res; 2011 Mar; 63(3):241-8. PubMed ID: 21115116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.
    Huang K; Huang J; Xie X; Wang S; Chen C; Shen X; Liu P; Huang H
    Free Radic Biol Med; 2013 Dec; 65():528-540. PubMed ID: 23891678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking RAGE and Nox in diabetic micro- and macrovascular complications.
    Koulis C; Watson AMD; Gray SP; Jandeleit-Dahm KA
    Diabetes Metab; 2015 Sep; 41(4):272-281. PubMed ID: 26323666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The renin-angiotensin system and diabetic nephropathy.
    Gurley SB; Coffman TM
    Semin Nephrol; 2007 Mar; 27(2):144-52. PubMed ID: 17418683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphatidylinositol 3'-kinase-dependent activation of renal mesangial cell Ki-Ras and ERK by advanced glycation end products.
    Xu D; Kyriakis JM
    J Biol Chem; 2003 Oct; 278(41):39349-55. PubMed ID: 12871951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Risk and prevention of diabetic nephropathy].
    Ravera M; Re M; Deferrari G
    G Ital Nefrol; 2007; 24 Suppl 38():13-9. PubMed ID: 17922442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease.
    Thomas MC; Baynes JW; Thorpe SR; Cooper ME
    Curr Drug Targets; 2005 Jun; 6(4):453-74. PubMed ID: 16026265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced glycation endproducts and diabetic nephropathy.
    Makita Z; Yanagisawa K; Kuwajima S; Yoshioka N; Atsumi T; Hasunuma Y; Koike T
    J Diabetes Complications; 1995; 9(4):265-8. PubMed ID: 8573743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy.
    Kumar Pasupulati A; Chitra PS; Reddy GB
    Biomol Concepts; 2016 Dec; 7(5-6):293-309. PubMed ID: 27816946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products.
    Liu K; Xu H; Lv G; Liu B; Lee MK; Lu C; Lv X; Wu Y
    Life Sci; 2015 Feb; 123():78-85. PubMed ID: 25623853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of the toxic AGEs (TAGE)-RAGE system in the pathogenesis of diabetic vascular complications: a novel therapeutic strategy.
    Takeuchi M; Takino J; Yamagishi S
    Curr Drug Targets; 2010 Nov; 11(11):1468-82. PubMed ID: 20583971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
    Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS
    Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The podocyte in diabetic kidney disease.
    Stitt-Cavanagh E; MacLeod L; Kennedy C
    ScientificWorldJournal; 2009 Oct; 9():1127-39. PubMed ID: 19838599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress and advanced glycation in diabetic nephropathy.
    Coughlan MT; Mibus AL; Forbes JM
    Ann N Y Acad Sci; 2008 Apr; 1126():190-3. PubMed ID: 18448815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beneficial effects of metformin and irbesartan on advanced glycation end products (AGEs)-RAGE-induced proximal tubular cell injury.
    Ishibashi Y; Matsui T; Takeuchi M; Yamagishi S
    Pharmacol Res; 2012 Mar; 65(3):297-302. PubMed ID: 22100460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer's disease.
    Takeuchi M; Yamagishi S
    Curr Pharm Des; 2008; 14(10):973-8. PubMed ID: 18473848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy.
    Matsui T; Higashimoto Y; Nishino Y; Nakamura N; Fukami K; Yamagishi SI
    Diabetes; 2017 Jun; 66(6):1683-1695. PubMed ID: 28385802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical review: The role of advanced glycation end products in progression and complications of diabetes.
    Goh SY; Cooper ME
    J Clin Endocrinol Metab; 2008 Apr; 93(4):1143-52. PubMed ID: 18182449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease.
    Miranda-Díaz AG; Pazarín-Villaseñor L; Yanowsky-Escatell FG; Andrade-Sierra J
    J Diabetes Res; 2016; 2016():7047238. PubMed ID: 27525285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.