These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 18473844)

  • 41. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)?
    Zhuang A; Forbes JM
    Glycoconj J; 2016 Aug; 33(4):645-52. PubMed ID: 27270766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of advanced glycation end products and insulin resistance in diabetic nephropathy.
    Parwani K; Mandal P
    Arch Physiol Biochem; 2023 Feb; 129(1):95-107. PubMed ID: 32730131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Can Targeting the Incretin Pathway Dampen RAGE-Mediated Events in Diabetic Nephropathy?
    Sourris KC; Yao H; Jerums G; Cooper ME; Ekinci EI; Coughlan MT
    Curr Drug Targets; 2016; 17(11):1252-64. PubMed ID: 26201485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential new therapeutic agents for diabetic kidney disease.
    Turgut F; Bolton WK
    Am J Kidney Dis; 2010 May; 55(5):928-40. PubMed ID: 20138415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advanced glycation: how are we progressing to combat this web of sugar anomalies in diabetic nephropathy.
    Forbes JM; Thallas-Bonke V; Cooper ME; Thomas MC
    Curr Pharm Des; 2004; 10(27):3361-72. PubMed ID: 15544521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel insights in the treatment of diabetic nephropathy.
    Schrijvers BF; De Vriese AS
    Acta Clin Belg; 2007; 62(5):278-90. PubMed ID: 18229460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes.
    Coughlan MT; Thorburn DR; Penfold SA; Laskowski A; Harcourt BE; Sourris KC; Tan AL; Fukami K; Thallas-Bonke V; Nawroth PP; Brownlee M; Bierhaus A; Cooper ME; Forbes JM
    J Am Soc Nephrol; 2009 Apr; 20(4):742-52. PubMed ID: 19158353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Non-enzymatic glycation and oxidative stress in chronic illnesses and diabetes mellitus].
    Nawroth PP; Bierhaus A; Vogel GE; Hofmann MA; Zumbach M; Wahl P; Ziegler R
    Med Klin (Munich); 1999 Jan; 94(1):29-38. PubMed ID: 10081287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Negative consequences of glycation.
    Brownlee M
    Metabolism; 2000 Feb; 49(2 Suppl 1):9-13. PubMed ID: 10693913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction.
    Fukami K; Ueda S; Yamagishi S; Kato S; Inagaki Y; Takeuchi M; Motomiya Y; Bucala R; Iida S; Tamaki K; Imaizumi T; Cooper ME; Okuda S
    Kidney Int; 2004 Dec; 66(6):2137-47. PubMed ID: 15569303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chrysin Inhibits Advanced Glycation End Products-Induced Kidney Fibrosis in Renal Mesangial Cells and Diabetic Kidneys.
    Lee EJ; Kang MK; Kim DY; Kim YH; Oh H; Kang YH
    Nutrients; 2018 Jul; 10(7):. PubMed ID: 29987200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Therapeutic Potential of Phlorotannin-Rich
    Cho CH; Lee CJ; Kim MG; Ryu B; Je JG; Kim Y; Lee SH
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Renal protection in diabetes--an emerging role for calcium antagonists.
    Parving HH; Tarnow L; Rossing P
    Cardiology; 1997; 88 Suppl 3():56-62. PubMed ID: 9397296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pimagedine: a novel therapy for diabetic nephropathy.
    Abdel-Rahman E; Bolton WK
    Expert Opin Investig Drugs; 2002 Apr; 11(4):565-74. PubMed ID: 11922864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation.
    Matsui T; Yamagishi S; Takeuchi M; Ueda S; Fukami K; Okuda S
    Biochem Biophys Res Commun; 2010 Jul; 398(2):326-30. PubMed ID: 20599709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidative stress in diabetic nephropathy: basic and clinical information.
    Ha H; Lee HB
    Curr Diab Rep; 2001 Dec; 1(3):282-7. PubMed ID: 12643211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbonyl stress in the pathogenesis of diabetic nephropathy.
    Suzuki D; Miyata T
    Intern Med; 1999 Apr; 38(4):309-14. PubMed ID: 10361902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Perspective on the Impact of Advanced Glycation End Products in the Progression of Diabetic Nephropathy.
    Khanam A; Ahmad S; Husain A
    Curr Protein Pept Sci; 2023; 24(1):2-6. PubMed ID: 36366848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. VEGF and podocytes in diabetic nephropathy.
    Tufro A; Veron D
    Semin Nephrol; 2012 Jul; 32(4):385-93. PubMed ID: 22958493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis.
    Maeda S; Matsui T; Takeuchi M; Yamagishi S
    Diabetes Metab Res Rev; 2013 Jul; 29(5):406-12. PubMed ID: 23508966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.