These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18473860)

  • 41. Is there a future for cell-penetrating peptides in oligonucleotide delivery?
    Lee SH; Castagner B; Leroux JC
    Eur J Pharm Biopharm; 2013 Sep; 85(1):5-11. PubMed ID: 23958313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis.
    Simões-Wüst AP; Hopkins-Donaldson S; Sigrist B; Belyanskaya L; Stahel RA; Zangemeister-Wittke U
    Oligonucleotides; 2004; 14(3):199-209. PubMed ID: 15625915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Down-modulation of cancer targets using locked nucleic acid (LNA)-based antisense oligonucleotides without transfection.
    Zhang Y; Qu Z; Kim S; Shi V; Liao B; Kraft P; Bandaru R; Wu Y; Greenberger LM; Horak ID
    Gene Ther; 2011 Apr; 18(4):326-33. PubMed ID: 21179173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Down-modulation of survivin expression and inhibition of tumor growth in vivo by EZN-3042, a locked nucleic acid antisense oligonucleotide.
    Sapra P; Wang M; Bandaru R; Zhao H; Greenberger LM; Horak ID
    Nucleosides Nucleotides Nucleic Acids; 2010 Feb; 29(2):97-112. PubMed ID: 20391197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antisense oligonucleotides in cutaneous therapy.
    Wraight CJ; White PJ
    Pharmacol Ther; 2001 Apr; 90(1):89-104. PubMed ID: 11448727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antisense oligonucleotides: target validation and development of systemically delivered therapeutic nanoparticles.
    Zhang C; Pei J; Kumar D; Sakabe I; Boudreau HE; Gokhale PC; Kasid UN
    Methods Mol Biol; 2007; 361():163-85. PubMed ID: 17172711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics.
    Xu L; Anchordoquy T
    J Pharm Sci; 2011 Jan; 100(1):38-52. PubMed ID: 20575003
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overview of targeted therapies for cancer.
    Finley RS
    Am J Health Syst Pharm; 2003 Dec; 60(24 Suppl 9):S4-10. PubMed ID: 14717022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Locked nucleic acid antisense inhibitor targeting apolipoprotein C-III efficiently and preferentially removes triglyceride from large very low-density lipoprotein particles in murine plasma.
    Yamamoto T; Obika S; Nakatani M; Yasuhara H; Wada F; Shibata E; Shibata MA; Harada-Shiba M
    Eur J Pharmacol; 2014 Jan; 723():353-9. PubMed ID: 24269597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advances in the stereocontrolled synthesis of antisense phosphorothioates.
    Lu Y
    Mini Rev Med Chem; 2006 Mar; 6(3):319-30. PubMed ID: 16515471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical studies of antisense therapy in cancer.
    Yuen AR; Sikic BI
    Front Biosci; 2000 Jun; 5():D588-93. PubMed ID: 10833467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GTI-2040. Lorus Therapeutics.
    Orr RM
    Curr Opin Investig Drugs; 2001 Oct; 2(10):1462-6. PubMed ID: 11890366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Downregulation of p21(WAF1/CIP1) and estrogen receptor alpha in MCF-7 cells by antisense oligonucleotides containing locked nucleic acid (LNA).
    Jepsen JS; Pfundheller HM; Lykkesfeldt AE
    Oligonucleotides; 2004; 14(2):147-56. PubMed ID: 15294077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions.
    Barata P; Sood AK; Hong DS
    Cancer Treat Rev; 2016 Nov; 50():35-47. PubMed ID: 27612280
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical studies in patients with solid tumors using a second-generation antisense oligonucleotide (GEM 231) targeted against protein kinase A type I.
    Mani S; Goel S; Nesterova M; Martin RM; Grindel JM; Rothenberg ML; Zhang R; Tortora G; Cho-Chung YS
    Ann N Y Acad Sci; 2003 Dec; 1002():252-62. PubMed ID: 14751840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting the Bcl-2 family in cancer therapy.
    Papadopoulos K
    Semin Oncol; 2006 Aug; 33(4):449-56. PubMed ID: 16890799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Technology evaluation: GEM-231, Hybridon.
    Yeung PK
    Curr Opin Mol Ther; 2003 Jun; 5(3):315-20. PubMed ID: 12870443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antisense oligonucleotides as therapeutic agents.
    Alama A; Barbieri F; Cagnoli M; Schettini G
    Pharmacol Res; 1997 Sep; 36(3):171-8. PubMed ID: 9367660
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antitumor mechanisms of systemically administered epidermal growth factor receptor antisense oligonucleotides in combination with docetaxel in squamous cell carcinoma of the head and neck.
    Thomas SM; Ogagan MJ; Freilino ML; Strychor S; Walsh DR; Gooding WE; Grandis JR; Zamboni WC
    Mol Pharmacol; 2008 Mar; 73(3):627-38. PubMed ID: 18025070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antisense drug discovery and development.
    Yamamoto T; Nakatani M; Narukawa K; Obika S
    Future Med Chem; 2011 Mar; 3(3):339-65. PubMed ID: 21446846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.