BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 18474817)

  • 1. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy.
    Moens AL; Takimoto E; Tocchetti CG; Chakir K; Bedja D; Cormaci G; Ketner EA; Majmudar M; Gabrielson K; Halushka MK; Mitchell JB; Biswal S; Channon KM; Wolin MS; Alp NJ; Paolocci N; Champion HC; Kass DA
    Circulation; 2008 May; 117(20):2626-36. PubMed ID: 18474817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrahydrobiopterin Protects Against Hypertrophic Heart Disease Independent of Myocardial Nitric Oxide Synthase Coupling.
    Hashimoto T; Sivakumaran V; Carnicer R; Zhu G; Hahn VS; Bedja D; Recalde A; Duglan D; Channon KM; Casadei B; Kass DA
    J Am Heart Assoc; 2016 Mar; 5(3):e003208. PubMed ID: 27001967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load.
    Takimoto E; Champion HC; Li M; Ren S; Rodriguez ER; Tavazzi B; Lazzarino G; Paolocci N; Gabrielson KL; Wang Y; Kass DA
    J Clin Invest; 2005 May; 115(5):1221-31. PubMed ID: 15841206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased cardiac mitochondrial tetrahydrobiopterin in a rat model of pressure overload.
    Shimizu S; Ishibashi M; Kumagai S; Wajima T; Hiroi T; Kurihara T; Ishii M; Kiuchi Y
    Int J Mol Med; 2013 Mar; 31(3):589-96. PubMed ID: 23313998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure.
    Moens AL; Ketner EA; Takimoto E; Schmidt TS; O'Neill CA; Wolin MS; Alp NJ; Channon KM; Kass DA
    J Mol Cell Cardiol; 2011 Oct; 51(4):564-9. PubMed ID: 21645517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor.
    Moens AL; Leyton-Mange JS; Niu X; Yang R; Cingolani O; Arkenbout EK; Champion HC; Bedja D; Gabrielson KL; Chen J; Xia Y; Hale AB; Channon KM; Halushka MK; Barker N; Wuyts FL; Kaminski PM; Wolin MS; Kass DA; Barouch LA
    J Mol Cell Cardiol; 2009 Nov; 47(5):576-85. PubMed ID: 19766235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury.
    Chuaiphichai S; Chu SM; Carnicer R; Kelly M; Bendall JK; Simon JN; Douglas G; Crabtree MJ; Casadei B; Channon KM
    Am J Physiol Heart Circ Physiol; 2023 Apr; 324(4):H430-H442. PubMed ID: 36735402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrahydrobiopterin (BH
    Francis BN; Salameh M; Khamisy-Farah R; Farah R
    Cardiovasc Ther; 2018 Feb; 36(1):. PubMed ID: 29151278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression.
    Bendall JK; Alp NJ; Warrick N; Cai S; Adlam D; Rockett K; Yokoyama M; Kawashima S; Channon KM
    Circ Res; 2005 Oct; 97(9):864-71. PubMed ID: 16179591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tetrahydrobiopterin in pulmonary vascular remodelling associated with pulmonary fibrosis.
    Almudéver P; Milara J; De Diego A; Serrano-Mollar A; Xaubet A; Perez-Vizcaino F; Cogolludo A; Cortijo J
    Thorax; 2013 Oct; 68(10):938-48. PubMed ID: 23739137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrahydrobiopterin paradoxically mediates cardiac oxidative stress and mitigates ethanol-evoked cardiac dysfunction in conscious female rats.
    Yao F; Abdel-Rahman AA
    Eur J Pharmacol; 2021 Oct; 909():174406. PubMed ID: 34364878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice.
    Santhanam AV; d'Uscio LV; He T; Das P; Younkin SG; Katusic ZS
    J Neurochem; 2015 Sep; 134(6):1129-38. PubMed ID: 26111938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I.
    Santhanam AV; d'Uscio LV; Katusic ZS
    Brain Res; 2015 Nov; 1625():198-205. PubMed ID: 26343845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene transfer of human guanosine 5'-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension.
    Zheng JS; Yang XQ; Lookingland KJ; Fink GD; Hesslinger C; Kapatos G; Kovesdi I; Chen AF
    Circulation; 2003 Sep; 108(10):1238-45. PubMed ID: 12925450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrahydrobiopterin reverse left ventricular hypertrophy and diastolic dysfunction through the PI3K/p-Akt pathway in spontaneously hypertensive rats.
    Chang P; Wang Q; Xu H; Yang M; Lin X; Li X; Zhang Z; Zhang X; Zhao F; Zhao X; Bai F; Yu J
    Biochem Biophys Res Commun; 2015 Aug; 463(4):1012-20. PubMed ID: 26093301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BH4 Increases nNOS Activity and Preserves Left Ventricular Function in Diabetes.
    Carnicer R; Duglan D; Ziberna K; Recalde A; Reilly S; Simon JN; Mafrici S; Arya R; Roselló-Lletí E; Chuaiphichai S; Tyler D; Lygate CA; Channon KM; Casadei B
    Circ Res; 2021 Mar; 128(5):585-601. PubMed ID: 33494625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiomyocyte GTP cyclohydrolase 1 and tetrahydrobiopterin increase NOS1 activity and accelerate myocardial relaxation.
    Carnicer R; Hale AB; Suffredini S; Liu X; Reilly S; Zhang MH; Surdo NC; Bendall JK; Crabtree MJ; Lim GB; Alp NJ; Channon KM; Casadei B
    Circ Res; 2012 Aug; 111(6):718-27. PubMed ID: 22798524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells.
    Shimizu S; Shiota K; Yamamoto S; Miyasaka Y; Ishii M; Watabe T; Nishida M; Mori Y; Yamamoto T; Kiuchi Y
    Free Radic Biol Med; 2003 May; 34(10):1343-52. PubMed ID: 12726922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury.
    Wang CH; Li SH; Weisel RD; Fedak PW; Hung A; Li RK; Rao V; Hyland K; Cherng WJ; Errett L; Leclerc Y; Bonneau D; Latter DA; Verma S
    Am J Physiol Regul Integr Comp Physiol; 2005 Aug; 289(2):R299-304. PubMed ID: 15774769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression.
    Crabtree MJ; Tatham AL; Al-Wakeel Y; Warrick N; Hale AB; Cai S; Channon KM; Alp NJ
    J Biol Chem; 2009 Jan; 284(2):1136-44. PubMed ID: 19011239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.