These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 1847505)
1. Fluorescence ratio imaging of cyclic AMP in single cells. Adams SR; Harootunian AT; Buechler YJ; Taylor SS; Tsien RY Nature; 1991 Feb; 349(6311):694-7. PubMed ID: 1847505 [TBL] [Abstract][Full Text] [Related]
2. Study of cyclic adenosine monophosphate microdomains in cells. Mongillo M; Terrin A; Evellin S; Lissandron V; Zaccolo M Methods Mol Biol; 2005; 307():1-13. PubMed ID: 15988051 [TBL] [Abstract][Full Text] [Related]
3. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Prinz A; Diskar M; Erlbruch A; Herberg FW Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697 [TBL] [Abstract][Full Text] [Related]
4. Measuring dynamic changes in cAMP using fluorescence resonance energy transfer. Evellin S; Mongillo M; Terrin A; Lissandron V; Zaccolo M Methods Mol Biol; 2004; 284():259-70. PubMed ID: 15173622 [TBL] [Abstract][Full Text] [Related]
5. Imaging signal transduction in living cells with GFP-based probes. Zaccolo M; Pozzan T IUBMB Life; 2000 May; 49(5):375-9. PubMed ID: 10902568 [TBL] [Abstract][Full Text] [Related]
6. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics. Byus CV; Fletcher WH J Cell Biol; 1982 Jun; 93(3):727-34. PubMed ID: 6288733 [TBL] [Abstract][Full Text] [Related]
7. Lipolysis is stimulated by PEGylated conjugated linoleic acid through the cyclic adenosine monophosphate-independent signaling pathway in 3T3-L1 cells: activation of MEK/ERK MAPK signaling pathway and hyper-secretion of adipo-cytokines. Moon HS; Lee HG; Seo JH; Guo DD; Kim IY; Chung CS; Kim TG; Choi YJ; Cho CS J Cell Physiol; 2008 Feb; 214(2):283-94. PubMed ID: 17654485 [TBL] [Abstract][Full Text] [Related]
8. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW; Taylor SS; Dostmann WR Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131 [TBL] [Abstract][Full Text] [Related]
9. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Yu S; Mei FC; Lee JC; Cheng X Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031 [TBL] [Abstract][Full Text] [Related]
10. Activation of cyclic adenosine 3':5'-monophosphate-dependent protein kinase in H35 hepatoma and Chinese hamster ovary cells by a phorbol ester tumor promoter. Byus CV; Trevillyan JM; Cavit LJ; Fletcher WH Cancer Res; 1983 Jul; 43(7):3321-6. PubMed ID: 6303580 [TBL] [Abstract][Full Text] [Related]
11. Human regulatory subunit RI beta of cAMP-dependent protein kinases: expression, holoenzyme formation and microinjection into living cells. Solberg R; Taskén K; Wen W; Coghlan VM; Meinkoth JL; Scott JD; Jahnsen T; Taylor SS Exp Cell Res; 1994 Oct; 214(2):595-605. PubMed ID: 7925653 [TBL] [Abstract][Full Text] [Related]
12. Functional changes in the regulatory subunit of the type II cyclic adenosine 3':5'-monophosphate-dependent protein kinase isozyme during normal and neoplastic lung development. Butley MS; Beer DG; Malkinson AM Cancer Res; 1984 Jun; 44(6):2689-97. PubMed ID: 6327022 [TBL] [Abstract][Full Text] [Related]
13. Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits. Daniel T; Carling D Biochem J; 2002 Aug; 365(Pt 3):629-38. PubMed ID: 11971761 [TBL] [Abstract][Full Text] [Related]
14. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nagai Y; Miyazaki M; Aoki R; Zama T; Inouye S; Hirose K; Iino M; Hagiwara M Nat Biotechnol; 2000 Mar; 18(3):313-6. PubMed ID: 10700148 [TBL] [Abstract][Full Text] [Related]
15. Detection of undegraded oligonucleotides in living sea urchin eggs by fluorescence resonance energy transfer. Uchiyama H; Hirano K; Kashiwasake-Jibu M; Mullah B; Andrus A; Taira K Nucleic Acids Symp Ser; 1995; (34):111-2. PubMed ID: 8841577 [TBL] [Abstract][Full Text] [Related]
16. Cell-cell interactions in the process of differentiation of thyroid epithelial cells into follicles: a study by microinjection and fluorescence microscopy on in vitro reconstituted thyroid follicles. Munari-Silem Y; Mesnil M; Selmi S; Bernier-Valentin F; Rabilloud R; Rousset B J Cell Physiol; 1990 Dec; 145(3):414-27. PubMed ID: 2125602 [TBL] [Abstract][Full Text] [Related]
17. A comparison of fluorescein isothiocyanate and lissamine rhodamine (RB 200) as labels for antibody in the fluorescent antibody technique. McKay IC; Forman D; White RG Immunology; 1981 Jul; 43(3):591-602. PubMed ID: 6788685 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous optical measurements of cytosolic Ca2+ and cAMP in single cells. Harbeck MC; Chepurny O; Nikolaev VO; Lohse MJ; Holz GG; Roe MW Sci STKE; 2006 Sep; 2006(353):pl6. PubMed ID: 16985238 [TBL] [Abstract][Full Text] [Related]
19. Changes in cyclic adenosine 3':5'-monophosphate-dependent protein kinases during the progression of urethan-induced mouse lung tumors. Butley MS; Stoner GD; Beer DG; Beer DS; Mason RJ; Malkinson AM Cancer Res; 1985 Aug; 45(8):3677-85. PubMed ID: 2990675 [TBL] [Abstract][Full Text] [Related]
20. Evolution of fluorescein as a platform for finely tunable fluorescence probes. Urano Y; Kamiya M; Kanda K; Ueno T; Hirose K; Nagano T J Am Chem Soc; 2005 Apr; 127(13):4888-94. PubMed ID: 15796553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]