These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 18476213)
1. Insecticidal Effects of Organotin(IV) Compounds on Plutella Xylostella (L.) Larvae. II. Inhibitory Potencies Against Acetylcholinesterase and Evidence for Synergism in Tests With Bacillus Thuringiensis(BER.) and Malathion. Ahmad NW; Huang TS; Balabaskaran S; Lo KM; Das VG Met Based Drugs; 1994; 1(1):1-17. PubMed ID: 18476213 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Effect of Combining Plutella xylostella Granulovirus and Bacillus thuringiensis at Sublethal Dosages on Controlling of Diamondback Moth (Lepidoptera: Plutellidae). Han G; Li C; Liu Q; Xu J J Econ Entomol; 2015 Oct; 108(5):2184-91. PubMed ID: 26453707 [TBL] [Abstract][Full Text] [Related]
4. Interactions of Bacillus thuringiensis strains for Plutella xylostella (L.) (Lepidoptera: Plutellidae) susceptibility. Santos MS; Dias NP; Costa LL; De Bortoli CP; Souza EH; Ferreira Santos AC; De Bortoli SA; Polanczyk RA J Invertebr Pathol; 2019 Nov; 168():107255. PubMed ID: 31606356 [TBL] [Abstract][Full Text] [Related]
5. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella). Yi X; Ehlers RU Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):633-6. PubMed ID: 17390802 [TBL] [Abstract][Full Text] [Related]
6. Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella). Liu YB; Tabashnik BE; Moar WJ; Smith RA Appl Environ Microbiol; 1998 Apr; 64(4):1385-9. PubMed ID: 16349543 [TBL] [Abstract][Full Text] [Related]
7. Shabbir MZ; Yang X; Batool R; Yin F; Kendra PE; Li ZY Front Physiol; 2021; 12():780255. PubMed ID: 34966290 [No Abstract] [Full Text] [Related]
8. Effect of Treatment With 3-Octylthio-1,1,1-Trifluoropropan-2-One in the Diamondback Moth (Lepidoptera: Plutellidae) to the Toxicity of Diafenthiuron, Indoxacarb, and Bacillus thuringiensis. Huang J; Tian S; Ren K; Chen Y; Lin S; Chen Y; Tian H; Zhao J; Wang C; Wei H; Gu X J Econ Entomol; 2020 Jun; 113(3):1419-1425. PubMed ID: 32173761 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of Bacillus thuringiensis (var. kurstaki) Against Diamondback Moth (Plutella xylostella L.) Eggs and Larvae on Cabbage Under Semi-Controlled Greenhouse Conditions. Legwaila MM; Munthali DC; Kwerepe BC; Obopile M Int J Insect Sci; 2015; 7():39-45. PubMed ID: 26816488 [TBL] [Abstract][Full Text] [Related]
10. Effects of a Bt-based insecticide on the functional response of Ceraeochrysa cincta preying on Plutella xylostella. de Oliveira Pimenta IC; da Silva Nunes G; de Magalhães GO; Dos Santos NA; Pinto MMD; De Bortoli SA Ecotoxicology; 2020 Sep; 29(7):856-865. PubMed ID: 32613481 [TBL] [Abstract][Full Text] [Related]
11. Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Schuler TH; Potting RP; Denholm I; Clark SJ; Clark AJ; Stewart CN; Poppy GM Transgenic Res; 2003 Jun; 12(3):351-61. PubMed ID: 12779123 [TBL] [Abstract][Full Text] [Related]
12. Synergism of Zhu Q; Gao M; Lu L; Liu X J Agric Food Chem; 2021 Oct; 69(40):11816-11824. PubMed ID: 34596393 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Feb; 71(2):216-24. PubMed ID: 24668916 [TBL] [Abstract][Full Text] [Related]
14. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498 [TBL] [Abstract][Full Text] [Related]
15. Cyt1A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of diamondback moth (Plutella xylostella) and pink bollworm (Pectinophora gossypiella). Meyer SK; Tabashnik BE; Liu YB; Wirth MC; Federici BA Appl Environ Microbiol; 2001 Jan; 67(1):462-3. PubMed ID: 11133481 [TBL] [Abstract][Full Text] [Related]
16. Characterization and expression profiling of ATP-binding cassette transporter genes in the diamondback moth, Plutella xylostella (L.). Qi W; Ma X; He W; Chen W; Zou M; Gurr GM; Vasseur L; You M BMC Genomics; 2016 Sep; 17(1):760. PubMed ID: 27678067 [TBL] [Abstract][Full Text] [Related]
17. Sublethal effects of methylthio-diafenthiuron on the life table parameters and enzymatic properties of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Su C; Xia X Pestic Biochem Physiol; 2020 Jan; 162():43-51. PubMed ID: 31836053 [TBL] [Abstract][Full Text] [Related]
18. Effects of Zolfaghari M; Yin F; Jurat-Fuentes JL; Xiao Y; Peng Z; Wang J; Yang X; Li ZY Insects; 2024 Aug; 15(8):. PubMed ID: 39194800 [TBL] [Abstract][Full Text] [Related]
19. Penetration, excretion and metabolism of 14C malathion in susceptible and resistant strains of Plutella xylostella. Doichuanngam K; Thornhill RA Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Apr; 101(3):583-8. PubMed ID: 1354137 [TBL] [Abstract][Full Text] [Related]
20. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Xie Y; Xu C; Gao M; Zhang X; Lu L; Hu X; Chen W; Jurat-Fuentes JL; Zhu Q; Liu Y; Lin M; Zhong J; Liu X Pest Manag Sci; 2021 Oct; 77(10):4593-4606. PubMed ID: 34092019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]