BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1847635)

  • 1. Inactivation of cytochrome c oxidase activity in mitochondrial membranes during redox cycling of doxorubicin.
    Demant EJ
    Biochem Pharmacol; 1991 Feb; 41(4):543-52. PubMed ID: 1847635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin.
    Marcillat O; Zhang Y; Davies KJ
    Biochem J; 1989 Apr; 259(1):181-9. PubMed ID: 2719642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oxidative inactivation of mitochondrial electron transport chain components and ATPase.
    Zhang Y; Marcillat O; Giulivi C; Ernster L; Davies KJ
    J Biol Chem; 1990 Sep; 265(27):16330-6. PubMed ID: 2168888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH oxidation in submitochondrial particles protects respiratory chain activity against damage by adriamycin-Fe3+.
    Demant EJ
    Eur J Biochem; 1983 Dec; 137(1-2):113-8. PubMed ID: 6317378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Adriamycin (doxorubicin)-induced inactivation of cytochrome c oxidase depends on the presence of iron or copper.
    Hasinoff BB; Davey JP; O'Brien PJ
    Xenobiotica; 1989 Feb; 19(2):231-41. PubMed ID: 2543148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iron(III)-adriamycin complex inhibits cytochrome c oxidase before its inactivation.
    Hasinoff BB; Davey JP
    Biochem J; 1988 Mar; 250(3):827-34. PubMed ID: 2839147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destruction of phospholipids and respiratory-chain activity in pig-heart submitochondrial particles induced by an adriamycin-iron complex.
    Demant EJ; Jensen PK
    Eur J Biochem; 1983 May; 132(3):551-6. PubMed ID: 6852013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV.
    Nicolay K; de Kruijff B
    Biochim Biophys Acta; 1987 Jul; 892(3):320-30. PubMed ID: 3036220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doxorubicin-dependent lipid peroxidation at low partial pressures of O2.
    Winterbourn CC; Gutteridge JM; Halliwell B
    J Free Radic Biol Med; 1985; 1(1):43-9. PubMed ID: 3939136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes.
    Girotti AW; Thomas JP; Jordan JE
    J Free Radic Biol Med; 1985; 1(5-6):395-401. PubMed ID: 3841804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxyradical production results from the Fe3(+)-doxorubicin complex undergoing self-reduction by its alpha-ketol group.
    Hasinoff BB
    Biochem Cell Biol; 1990 Dec; 68(12):1331-6. PubMed ID: 1964792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and inactivation of NADH-cytochrome c reductase activity of bovine heart submitochondrial particles by the iron(III)-adriamycin complex.
    Hasinoff BB
    Biochem J; 1990 Feb; 265(3):865-70. PubMed ID: 2306220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-dependent hepatotoxicity due to doxorubicin: role of reducing equivalent supply in perfused rat liver.
    Ganey PE; Kauffman FC; Thurman RG
    Mol Pharmacol; 1988 Nov; 34(5):695-701. PubMed ID: 3193959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of peroxidized cardiolipin to inactivation of bovine heart cytochrome c oxidase.
    Musatov A
    Free Radic Biol Med; 2006 Jul; 41(2):238-46. PubMed ID: 16814104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-reduction of the iron(III)-doxorubicin complex.
    Hasinoff BB
    Free Radic Biol Med; 1989; 7(6):583-93. PubMed ID: 2559881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles.
    Paradies G; Petrosillo G; Pistolese M; Ruggiero FM
    FEBS Lett; 2000 Jan; 466(2-3):323-6. PubMed ID: 10682852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase by oxacarbocyanine dyes. A structure-activity study.
    Anderson WM; Wood JM; Anderson AC
    Biochem Pharmacol; 1993 May; 45(10):2115-22. PubMed ID: 8512593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptamine-4,5-dione, a putative endotoxic metabolite of the superoxide-mediated oxidation of serotonin, is a mitochondrial toxin: possible implications in neurodegenerative brain disorders.
    Jiang XR; Wrona MZ; Dryhurst G
    Chem Res Toxicol; 1999 May; 12(5):429-36. PubMed ID: 10328753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.