These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network. Keil M; Exner TE; Brickmann J J Comput Chem; 2004 Apr; 25(6):779-89. PubMed ID: 15011250 [TBL] [Abstract][Full Text] [Related]
6. Predicting small ligand binding sites in proteins using backbone structure. Bordner AJ Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825 [TBL] [Abstract][Full Text] [Related]
7. Protein-protein binding sites prediction by 3D structural similarities. Guo F; Li SC; Wang L J Chem Inf Model; 2011 Dec; 51(12):3287-94. PubMed ID: 22077765 [TBL] [Abstract][Full Text] [Related]
8. DNA and protein footprinting analysis of the modulation of DNA binding by the N-terminal domain of the Saccharomyces cerevisiae TATA binding protein. Gupta S; Cheng H; Mollah AK; Jamison E; Morris S; Chance MR; Khrapunov S; Brenowitz M Biochemistry; 2007 Sep; 46(35):9886-98. PubMed ID: 17683121 [TBL] [Abstract][Full Text] [Related]
9. A method to detect important residues using protein binding site comparison. Park K; Kim D Genome Inform; 2006; 17(2):216-25. PubMed ID: 17503394 [TBL] [Abstract][Full Text] [Related]
10. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
11. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. Kalidas Y; Chandra N J Struct Biol; 2008 Jan; 161(1):31-42. PubMed ID: 17949996 [TBL] [Abstract][Full Text] [Related]
12. BSAlign: a rapid graph-based algorithm for detecting ligand-binding sites in protein structures. Aung Z; Tong JC Genome Inform; 2008; 21():65-76. PubMed ID: 19425148 [TBL] [Abstract][Full Text] [Related]
13. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity. Kupas K; Ultsch A; Klebe G Proteins; 2008 May; 71(3):1288-306. PubMed ID: 18041748 [TBL] [Abstract][Full Text] [Related]
14. Predicting protein interaction sites from residue spatial sequence profile and evolution rate. Wang B; Chen P; Huang DS; Li JJ; Lok TM; Lyu MR FEBS Lett; 2006 Jan; 580(2):380-4. PubMed ID: 16376878 [TBL] [Abstract][Full Text] [Related]
15. Protein docking using surface matching and supervised machine learning. Bordner AJ; Gorin AA Proteins; 2007 Aug; 68(2):488-502. PubMed ID: 17444516 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional profiles: a new tool to identify protein surface similarities. de Rinaldis M; Ausiello G; Cesareni G; Helmer-Citterich M J Mol Biol; 1998 Dec; 284(4):1211-21. PubMed ID: 9837739 [TBL] [Abstract][Full Text] [Related]
18. InCa-SiteFinder: a method for structure-based prediction of inositol and carbohydrate binding sites on proteins. Kulharia M; Bridgett SJ; Goody RS; Jackson RM J Mol Graph Model; 2009 Oct; 28(3):297-303. PubMed ID: 19762259 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary conservation in multiple faces of protein interaction. Choi YS; Yang JS; Choi Y; Ryu SH; Kim S Proteins; 2009 Oct; 77(1):14-25. PubMed ID: 19350617 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. Meyer M; Wilson P; Schomburg D J Mol Biol; 1996 Nov; 264(1):199-210. PubMed ID: 8950278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]