These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. PIER: protein interface recognition for structural proteomics. Kufareva I; Budagyan L; Raush E; Totrov M; Abagyan R Proteins; 2007 May; 67(2):400-17. PubMed ID: 17299750 [TBL] [Abstract][Full Text] [Related]
23. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. Yu H; Chan YL; Wool IG J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738 [TBL] [Abstract][Full Text] [Related]
24. Binding response: a descriptor for selecting ligand binding site on protein surfaces. Zhong S; MacKerell AD J Chem Inf Model; 2007; 47(6):2303-15. PubMed ID: 17900106 [TBL] [Abstract][Full Text] [Related]
25. Predicting calcium-binding sites in proteins - a graph theory and geometry approach. Deng H; Chen G; Yang W; Yang JJ Proteins; 2006 Jul; 64(1):34-42. PubMed ID: 16617426 [TBL] [Abstract][Full Text] [Related]
26. Empirical rules facilitate the search for binding sites on protein surfaces. te Heesen H; Schlitter AM; Schlitter J J Mol Graph Model; 2007 Jan; 25(5):671-9. PubMed ID: 16781176 [TBL] [Abstract][Full Text] [Related]
27. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy. Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martà MA J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380 [TBL] [Abstract][Full Text] [Related]
28. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Nayal M; Honig B Proteins; 2006 Jun; 63(4):892-906. PubMed ID: 16477622 [TBL] [Abstract][Full Text] [Related]
29. Pocket extraction on proteins via the Voronoi diagram of spheres. Kim D; Cho CH; Cho Y; Ryu J; Bhak J; Kim DS J Mol Graph Model; 2008 Apr; 26(7):1104-12. PubMed ID: 18023220 [TBL] [Abstract][Full Text] [Related]
30. Computation of conformational entropy from protein sequences using the machine-learning method--application to the study of the relationship between structural conservation and local structural stability. Huang SW; Hwang JK Proteins; 2005 Jun; 59(4):802-9. PubMed ID: 15828008 [TBL] [Abstract][Full Text] [Related]
31. Detection of multiscale pockets on protein surfaces using mathematical morphology. Kawabata T Proteins; 2010 Apr; 78(5):1195-211. PubMed ID: 19938154 [TBL] [Abstract][Full Text] [Related]
32. Identification of transient hub proteins and the possible structural basis for their multiple interactions. Higurashi M; Ishida T; Kinoshita K Protein Sci; 2008 Jan; 17(1):72-8. PubMed ID: 18156468 [TBL] [Abstract][Full Text] [Related]
33. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Kawabata T; Go N Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522 [TBL] [Abstract][Full Text] [Related]
34. On the contribution of water-mediated interactions to protein-complex stability. Reichmann D; Phillip Y; Carmi A; Schreiber G Biochemistry; 2008 Jan; 47(3):1051-60. PubMed ID: 18161993 [TBL] [Abstract][Full Text] [Related]
35. Prediction of active site cleft using support vector machines. Sonavane S; Chakrabarti P J Chem Inf Model; 2010 Dec; 50(12):2266-73. PubMed ID: 21080689 [TBL] [Abstract][Full Text] [Related]
36. An intuitive approach to measuring protein surface curvature. Coleman RG; Burr MA; Souvaine DL; Cheng AC Proteins; 2005 Dec; 61(4):1068-74. PubMed ID: 16235263 [TBL] [Abstract][Full Text] [Related]
38. Method for comparing the structures of protein ligand-binding sites and application for predicting protein-drug interactions. Minai R; Matsuo Y; Onuki H; Hirota H Proteins; 2008 Jul; 72(1):367-81. PubMed ID: 18214952 [TBL] [Abstract][Full Text] [Related]