These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18476862)

  • 1. Prospects for increasing starch and sucrose yields for bioethanol production.
    Smith AM
    Plant J; 2008 May; 54(4):546-58. PubMed ID: 18476862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.
    Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM
    Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems.
    Lawlor DW
    J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes.
    Tuncel A; Okita TW
    Plant Sci; 2013 Oct; 211():52-60. PubMed ID: 23987811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer.
    Wu L; Birch RG
    Plant Biotechnol J; 2007 Jan; 5(1):109-17. PubMed ID: 17207261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic modification of cassava for enhanced starch production.
    Ihemere U; Arias-Garzon D; Lawrence S; Sayre R
    Plant Biotechnol J; 2006 Jul; 4(4):453-65. PubMed ID: 17177810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants.
    Zhang L; Häusler RE; Greiten C; Hajirezaei MR; Haferkamp I; Neuhaus HE; Flügge UI; Ludewig F
    Plant Biotechnol J; 2008 Jun; 6(5):453-64. PubMed ID: 18363632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic engineering approaches to improve bioethanol production from maize.
    Torney F; Moeller L; Scarpa A; Wang K
    Curr Opin Biotechnol; 2007 Jun; 18(3):193-9. PubMed ID: 17399975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering plants for elevated CO(2): a relationship between starch degradation and sugar sensing.
    Sharkey TD; Laporte M; Lu Y; Weise S; Weber AP
    Plant Biol (Stuttg); 2004 May; 6(3):280-8. PubMed ID: 15143436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.
    Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2008 Nov; 56(22):10445-51. PubMed ID: 18942836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate availability affects growth and metabolism in peach fruit.
    Morandi B; Corelli Grappadelli L; Rieger M; Lo Bianco R
    Physiol Plant; 2008 Jun; 133(2):229-41. PubMed ID: 18298408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves.
    Sanz-Barrio R; Corral-Martinez P; Ancin M; Segui-Simarro JM; Farran I
    Plant Biotechnol J; 2013 Jun; 11(5):618-27. PubMed ID: 23398733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro and macroalgal biomass: a renewable source for bioethanol.
    John RP; Anisha GS; Nampoothiri KM; Pandey A
    Bioresour Technol; 2011 Jan; 102(1):186-93. PubMed ID: 20663661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europaea L.) trees.
    Bustan A; Avni A; Lavee S; Zipori I; Yeselson Y; Schaffer AA; Riov J; Dag A
    Tree Physiol; 2011 May; 31(5):519-30. PubMed ID: 21571726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields.
    Bahaji A; Li J; Sánchez-López ÁM; Baroja-Fernández E; Muñoz FJ; Ovecka M; Almagro G; Montero M; Ezquer I; Etxeberria E; Pozueta-Romero J
    Biotechnol Adv; 2014; 32(1):87-106. PubMed ID: 23827783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa).
    Lee SK; Jeon JS; Börnke F; Voll L; Cho JI; Goh CH; Jeong SW; Park YI; Kim SJ; Choi SB; Miyao A; Hirochika H; An G; Cho MH; Bhoo SH; Sonnewald U; Hahn TR
    Plant Cell Environ; 2008 Dec; 31(12):1851-63. PubMed ID: 18811733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuel ethanol production: process design trends and integration opportunities.
    Cardona CA; Sánchez OJ
    Bioresour Technol; 2007 Sep; 98(12):2415-57. PubMed ID: 17336061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rice antisense SPK transformant that lacks the accumulation of seed storage substances shows no correlation between sucrose concentration in phloem sap and demand for carbon sources in the sink organs.
    Shimada H; Koishihara H; Saito Y; Arashima Y; Furukawa T; Hayashi H
    Plant Cell Physiol; 2004 Aug; 45(8):1105-9. PubMed ID: 15356337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods.
    Gibon Y; Pyl ET; Sulpice R; Lunn JE; Höhne M; Günther M; Stitt M
    Plant Cell Environ; 2009 Jul; 32(7):859-74. PubMed ID: 19236606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.