These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18477306)

  • 21. [In vitro simulation of rabbit cecal fermentation in a semi- continuous flow fermentor. III. Effect of the quantity of dry matter introduced daily in the fermentor and reproducibility of the method].
    Adjiri D; Bouillier-Oudot M; Lebas F; Candau M
    Reprod Nutr Dev; 1995; 35(2):121-8. PubMed ID: 7537504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro fermentation of different starches by mixed micro-organisms from the sheep rumen.
    Ataşoğlu C; Yurtman IY
    J Anim Physiol Anim Nutr (Berl); 2007 Oct; 91(9-10):419-25. PubMed ID: 17845249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria--a study of pyrodextrinised starches from different sources.
    Laurentin A; Edwards CA
    Eur J Nutr; 2004 Jun; 43(3):183-9. PubMed ID: 15168041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation of animal components in strict carnivores: a comparative study with cheetah fecal inoculum.
    Depauw S; Bosch G; Hesta M; Whitehouse-Tedd K; Hendriks WH; Kaandorp J; Janssens GP
    J Anim Sci; 2012 Aug; 90(8):2540-8. PubMed ID: 22287677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate degradation and postbiotic analysis of alternative fiber ingredients fermented using an in vitro canine fecal inoculum model.
    Holt DA; Corsato Alvarenga I; Donadelli RA; Aldrich CG
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36943140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages.
    Blümmel M; Steingass H; Becker K
    Br J Nutr; 1997 Jun; 77(6):911-21. PubMed ID: 9227188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential water-holding capacity and short-chain fatty acid production from purified fiber sources in a fecal incubation system.
    McBurney MI
    Nutrition; 1991; 7(6):421-4. PubMed ID: 1666322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short-chain fatty acids produced in vitro from fibre residues obtained from mixed diets containing different breads and in human faeces during the ingestion of the diets.
    Wisker E; Daniel M; Rave G; Feldheim W
    Br J Nutr; 2000 Jul; 84(1):31-7. PubMed ID: 10961158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial ecosystem and fermentation traits in the caecum of growing rabbits given diets varying in neutral detergent soluble and insoluble fibre levels.
    Rodríguez-Romero N; Abecia L; Fondevila M
    Anaerobe; 2013 Apr; 20():50-7. PubMed ID: 23403279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of differentially fermentable carbohydrates on the microbial fermentation profile of the gastrointestinal tract of broilers.
    Rehman H; Böhm J; Zentek J
    J Anim Physiol Anim Nutr (Berl); 2008 Aug; 92(4):471-80. PubMed ID: 18662357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeated measurements of in vitro fermentation of fibre-rich substrates using large intestinal microbiota of sows.
    Sappok MA; Pellikaan WF; Verstegen MW; Bosch G; Sundrum A; Hendriks WH
    J Sci Food Agric; 2013 Mar; 93(5):987-94. PubMed ID: 22936465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro fermentation of selected fibrous substrates by dog and cat fecal inoculum: influence of diet composition on substrate organic matter disappearance and short-chain fatty acid production.
    Sunvold GD; Fahey GC; Merchen NR; Reinhart GA
    J Anim Sci; 1995 Apr; 73(4):1110-22. PubMed ID: 7628955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws.
    Tang SX; Tayo GO; Tan ZL; Sun ZH; Shen LX; Zhou CS; Xiao WJ; Ren GP; Han XF; Shen SB
    J Anim Sci; 2008 May; 86(5):1164-72. PubMed ID: 18203979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic matter disappearance and production of short- and branched-chain fatty acids from selected fiber sources used in pet foods by a canine in vitro fermentation model1.
    Donadelli RA; Titgemeyer EC; Aldrich CG
    J Anim Sci; 2019 Nov; 97(11):4532-4539. PubMed ID: 31560750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resistant starch derived from processed legumes: in vitro and in vivo fermentation characteristics.
    Mahadevamma S; Shamala TR; Tharanathan RN
    Int J Food Sci Nutr; 2004 Aug; 55(5):399-405. PubMed ID: 15545048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationships between microflora and caecal fermentation in rabbits before and after weaning.
    Padilha MT; Licois D; Gidenne T; Carré B; Fonty G
    Reprod Nutr Dev; 1995; 35(4):375-86. PubMed ID: 7546229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle.
    Hart KJ; Martin PG; Foley PA; Kenny DA; Boland TM
    J Anim Sci; 2009 Oct; 87(10):3342-50. PubMed ID: 19542500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.
    Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E
    J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rat cecal inocula produce different patterns of short-chain fatty acids than fecal inocula in in vitro fermentations.
    Monsma DJ; Marlett JA
    J Nutr; 1995 Oct; 125(10):2463-70. PubMed ID: 7562080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro fermentation of oat flours from typical and high beta-glucan oat lines.
    Kim HJ; White PJ
    J Agric Food Chem; 2009 Aug; 57(16):7529-36. PubMed ID: 19572543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.