These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18477306)

  • 41. Rat cecal inocula produce different patterns of short-chain fatty acids than fecal inocula in in vitro fermentations.
    Monsma DJ; Marlett JA
    J Nutr; 1995 Oct; 125(10):2463-70. PubMed ID: 7562080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro fermentation of oat flours from typical and high beta-glucan oat lines.
    Kim HJ; White PJ
    J Agric Food Chem; 2009 Aug; 57(16):7529-36. PubMed ID: 19572543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat.
    Owens D; McGee M; Boland T; O'Kiely P
    J Anim Sci; 2009 Feb; 87(2):658-68. PubMed ID: 18952732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum.
    Giuberti G; Gallo A; Moschini M; Masoero F
    Animal; 2013 Sep; 7(9):1446-53. PubMed ID: 23782951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets.
    Piva A; Panciroli A; Meola E; Formigoni A
    J Nutr; 1996 Jan; 126(1):280-9. PubMed ID: 8558313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of 5% and 10% dietary apple pectin on parameters of fermentation in faeces and caecal digesta of weaning pigs.
    Zacharias B; Kerler A; Drochner W
    Arch Anim Nutr; 2004 Apr; 58(2):149-56. PubMed ID: 15195908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora.
    Smiricky-Tjardes MR; Flickinger EA; Grieshop CM; Bauer LL; Murphy MR; Fahey GC
    J Anim Sci; 2003 Oct; 81(10):2505-14. PubMed ID: 14552378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end products.
    Bosch G; Wrigglesworth DJ; Cone JW; Pellikaan WF; Hendriks WH
    J Anim Sci; 2013 Jan; 91(1):259-67. PubMed ID: 23048150
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Montoya CA; Blatchford P; Moughan PJ
    Br J Nutr; 2021 May; 125(9):998-1006. PubMed ID: 32912366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic effects of D-psicose in rats: studies on faecal and urinary excretion and caecal fermentation.
    Matsuo T; Tanaka T; Hashiguchi M; Izumori K; Suzuki H
    Asia Pac J Clin Nutr; 2003; 12(2):225-31. PubMed ID: 12810416
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of equine rectal inoculum as representative of the microbial activities within the horse hindgut using a fully automated in vitro gas production technique system.
    Kujawa TJ; van Doorn DA; Wambacq WA; Hesta M; Pellikaan WF
    J Anim Sci; 2020 Mar; 98(3):. PubMed ID: 32076715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [In vivo study of cecal fermentation activity in the rabbit. Completion and validation of a new technique for cecal cannulation].
    Gidenne T; Bellier R
    Reprod Nutr Dev; 1992; 32(4):365-76. PubMed ID: 1418398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid.
    Saengkerdsub S; Kim WK; Anderson RC; Nisbet DJ; Ricke SC
    Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Caecal parameters of rats fed diets supplemented with inulin in exchange for sucrose.
    Juśkiewicz J; Zduńczyk Z; Frejnagel S
    Arch Anim Nutr; 2007 Jun; 61(3):201-10. PubMed ID: 17578262
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fecal inoculum can be used to determine the rate and extent of in vitro fermentation of dietary fiber sources across three lemur species that differ in dietary profile: Varecia variegata, Eulemur fulvus and Hapalemur griseus.
    Campbell JL; Williams CV; Eisemann JH
    J Nutr; 2002 Oct; 132(10):3073-80. PubMed ID: 12368398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Caecum odd-numbered and branched-chain fatty acid composition in response to dietary changes in fattening rabbits.
    Papadomichelakis G; Mountzouris KC; Paraskevakis N; Fegeros K
    J Anim Physiol Anim Nutr (Berl); 2011 Dec; 95(6):707-16. PubMed ID: 21114691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of casein and urea as nitrogen sources on in vitro equine caecal fermentation.
    Santos AS; Ferreira LM; Martin-Rosset W; Cotovio M; Silva F; Bennett RN; Cone JW; Bessa RJ; Rodrigues MA
    Animal; 2012 Jul; 6(7):1096-102. PubMed ID: 23031469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The effect of very low and moderate fiber levels on metabolism in the cecum of growing rabbits].
    Schindler K; Geissler C; Lippold H; Gropp J
    Arch Tierernahr; 1996; 49(4):301-17. PubMed ID: 9065308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of rabbit age on in vitro caecal fermentation of starch, pectin, xylan, cellulose, compound feed and its fibre.
    Lavrenčič A
    Animal; 2007 Mar; 1(2):241-8. PubMed ID: 22444290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of cumulative gas and volatile fatty acid production to predict in vitro fermentation kinetics of Italian ryegrass leaf cell walls and contents at various time intervals.
    Groot JC; Williams BA; Oostdam AJ; Boer H; Tamminga S
    Br J Nutr; 1998 Jun; 79(6):519-25. PubMed ID: 9771339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.