These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1847737)

  • 1. Induction of cognitive impairment by scopolamine and noncholinergic agents in rhesus monkeys.
    Rupniak NM; Samson NA; Steventon MJ; Iversen SD
    Life Sci; 1991; 48(9):893-9. PubMed ID: 1847737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scopolamine impairs auditory delayed matching-to-sample performance in monkeys.
    Plakke B; Ng CW; Poremba A
    Neurosci Lett; 2008 Jun; 438(1):126-30. PubMed ID: 18455309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous ICV infusion of scopolamine impairs sustained attention of rhesus monkeys.
    Callahan MJ; Kinsora JJ; Harbaugh RE; Reeder TM; Davis RE
    Neurobiol Aging; 1993; 14(2):147-51. PubMed ID: 8487917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The M₁/M₄ preferring agonist xanomeline reverses amphetamine-, MK801- and scopolamine-induced abnormalities of latent inhibition: putative efficacy against positive, negative and cognitive symptoms in schizophrenia.
    Barak S; Weiner I
    Int J Neuropsychopharmacol; 2011 Oct; 14(9):1233-46. PubMed ID: 21211109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The scopolamine-reversal paradigm in rats and monkeys: the importance of computer-assisted operant-conditioning memory tasks for screening drug candidates.
    Buccafusco JJ; Terry AV; Webster SJ; Martin D; Hohnadel EJ; Bouchard KA; Warner SE
    Psychopharmacology (Berl); 2008 Aug; 199(3):481-94. PubMed ID: 17657478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist.
    Bartolomeo AC; Morris H; Buccafusco JJ; Kille N; Rosenzweig-Lipson S; Husbands MG; Sabb AL; Abou-Gharbia M; Moyer JA; Boast CA
    J Pharmacol Exp Ther; 2000 Feb; 292(2):584-96. PubMed ID: 10640295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization.
    Schwarz RD; Callahan MJ; Coughenour LL; Dickerson MR; Kinsora JJ; Lipinski WJ; Raby CA; Spencer CJ; Tecle H
    J Pharmacol Exp Ther; 1999 Nov; 291(2):812-22. PubMed ID: 10525104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving effects of huperzine A on spatial working memory in aged monkeys and young adult monkeys with experimental cognitive impairment.
    Ye JW; Cai JX; Wang LM; Tang XC
    J Pharmacol Exp Ther; 1999 Feb; 288(2):814-9. PubMed ID: 9918593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Δ⁹Tetrahydrocannabinol impairs visuo-spatial associative learning and spatial working memory in rhesus macaques.
    Taffe MA
    J Psychopharmacol; 2012 Oct; 26(10):1299-306. PubMed ID: 22526684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive-Enhancing Effects of Acetylcholine Receptor Agonists in Group-Housed Cynomolgus Monkeys Who Drink Ethanol.
    Galbo-Thomma LK; Epperly PM; Blough BE; Landavazo A; Saldaña SJ; Carroll FI; Czoty PW
    J Pharmacol Exp Ther; 2024 May; 389(3):258-267. PubMed ID: 38135508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychopharmacological investigations of a lead-induced long-term cognitive deficit in monkeys.
    Levin ED; Bowman RE; Wegert S; Vuchetich J
    Psychopharmacology (Berl); 1987; 91(3):334-41. PubMed ID: 3104955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment.
    Talpos JC; Aerts N; Fellini L; Steckler T
    Pharmacol Biochem Behav; 2014 Jul; 122():97-106. PubMed ID: 24662914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive effects of morphine and scopolamine, MK-801, propanolol on spatial working memory in rhesus monkeys.
    Wang J; Chen Y; Carlson S; Li L; Hu X; Ma Y
    Neurosci Lett; 2012 Aug; 523(2):119-24. PubMed ID: 22750153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scopolamine induced deficits in a battery of rat cognitive tests: comparisons of sensitivity and specificity.
    Hodges DB; Lindner MD; Hogan JB; Jones KM; Markus EJ
    Behav Pharmacol; 2009 May; 20(3):237-51. PubMed ID: 19436198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose-specific effects of scopolamine on canine cognition: impairment of visuospatial memory, but not visuospatial discrimination.
    Araujo JA; Chan AD; Winka LL; Seymour PA; Milgram NW
    Psychopharmacology (Berl); 2004 Aug; 175(1):92-8. PubMed ID: 15029470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scopolamine, morphine, and brain-stem auditory evoked potentials in awake monkeys.
    Samra SK; Krutak-Krol H; Pohorecki R; Domino EF
    Anesthesiology; 1985 Apr; 62(4):437-41. PubMed ID: 3985401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term cognitive impairment in MPTP-treated rhesus monkeys.
    Fernandez-Ruiz J; Doudet DJ; Aigner TG
    Neuroreport; 1995 Dec; 7(1):102-4. PubMed ID: 8742427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging.
    Araujo JA; Studzinski CM; Milgram NW
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Mar; 29(3):411-22. PubMed ID: 15795050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cholinergic drugs on scopolamine-induced memory impairment in rhesus monkeys.
    Hironaka N; Ando K
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1996 Jun; 16(3):103-8. PubMed ID: 8905798
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.