BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18477484)

  • 1. Differential rate constants of racemization of aspartyl and asparaginyl residues in human alpha A-crystallin mutants.
    Nakamura T; Sakai M; Sadakane Y; Haga T; Goto Y; Kinouchi T; Saito T; Fujii N
    Biochim Biophys Acta; 2008 Sep; 1784(9):1192-9. PubMed ID: 18477484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic study of racemization of aspartyl residues in recombinant human alphaA-crystallin.
    Nakamura T; Sadakane Y; Fujii N
    Biochim Biophys Acta; 2006 Apr; 1764(4):800-6. PubMed ID: 16580271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific rapid deamidation and isomerization in human lens αA-crystallin in vitro.
    Takata T; Ha S; Koide T; Fujii N
    Protein Sci; 2020 Apr; 29(4):955-965. PubMed ID: 31930615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single Asp isomer substitution in an αA-crystallin-derived peptide induces a large change in peptide properties.
    Magami K; Kim I; Fujii N
    Exp Eye Res; 2020 Mar; 192():107930. PubMed ID: 31931001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin.
    Chaves JM; Srivastava K; Gupta R; Srivastava OP
    Biochemistry; 2008 Sep; 47(38):10069-83. PubMed ID: 18754677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of racemization of aspartyl residues in model peptides of alpha A-crystallin.
    Fujii N; Momose Y; Harada K
    Int J Pept Protein Res; 1996 Aug; 48(2):118-22. PubMed ID: 8872528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a selective and sensitive analytical method to detect isomerized aspartic acid residues in crystallin using a combination of derivatization and liquid chromatography mass spectrometry.
    Mizuno H; Shindo T; Ito K; Sakane I; Miyazaki Y; Toyo'oka T; Todoroki K
    J Chromatogr A; 2020 Jul; 1623():461134. PubMed ID: 32345439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the C-terminal residues on oligomerization of alpha A-crystallin.
    Thampi P; Abraham EC
    Biochemistry; 2003 Oct; 42(40):11857-63. PubMed ID: 14529298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific racemization and isomerization of the aspartyl residue of alphaA-crystallin due to UV-B irradiation.
    Fujii N; Momose Y; Ishibashi Y; Uemura T; Takita M; Takehana M
    Exp Eye Res; 1997 Jul; 65(1):99-104. PubMed ID: 9237870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions.
    Aki K; Fujii N; Fujii N
    PLoS One; 2013; 8(3):e58515. PubMed ID: 23505525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cataract-causing mutation G98R in human alphaA-crystallin leads to folding defects and loss of chaperone activity.
    Singh D; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2006 Nov; 12():1372-9. PubMed ID: 17149363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isomerization of Asp residues plays an important role in αA-crystallin dissociation.
    Takata T; Fujii N
    FEBS J; 2016 Mar; 283(5):850-9. PubMed ID: 26700637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous racemization and isomerization at specific aspartic acid residues in alpha B-crystallin from the aged human lens.
    Fujii N; Ishibashi Y; Satoh K; Fujino M; Harada K
    Biochim Biophys Acta; 1994 Feb; 1204(2):157-63. PubMed ID: 8142454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between the loss of the chaperone-like activity and the oxidation, isomerization and racemization of gamma-irradiated alpha-crystallin.
    Fujii N; Hiroki K; Matsumoto S; Masuda K; Inoue M; Tanaka Y; Awakura M; Akaboshi M
    Photochem Photobiol; 2001 Sep; 74(3):477-82. PubMed ID: 11594064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment.
    Aki K; Okamura E
    J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions.
    Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI
    J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of rate constants for β-linkage isomerization of three specific aspartyl residues in recombinant human αA-crystallin protein by reversed-phase HPLC.
    Sadakane Y; Fujii N; Nakagomi K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3240-6. PubMed ID: 21470922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of arginine-163 and the 163REEK166 motif in the oligomerization of truncated alpha A-crystallins.
    Rajan S; Chandrashekar R; Aziz A; Abraham EC
    Biochemistry; 2006 Dec; 45(51):15684-91. PubMed ID: 17176090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.