BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18477638)

  • 1. High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis.
    Mitra S; Shcherbakova IV; Altman RB; Brenowitz M; Laederach A
    Nucleic Acids Res; 2008 Jun; 36(11):e63. PubMed ID: 18477638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions.
    Takamoto K; Chance MR; Brenowitz M
    Nucleic Acids Res; 2004 Aug; 32(15):E119. PubMed ID: 15319447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical "footprinting".
    Brenowitz M; Chance MR; Dhavan G; Takamoto K
    Curr Opin Struct Biol; 2002 Oct; 12(5):648-53. PubMed ID: 12464318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recommended workflow for DNase I footprinting using a capillary electrophoresis genetic analyzer.
    Sivapragasam S; Pande A; Grove A
    Anal Biochem; 2015 Jul; 481():1-3. PubMed ID: 25908559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the information content of RNA structure mapping data for secondary structure prediction.
    Quarrier S; Martin JS; Davis-Neulander L; Beauregard A; Laederach A
    RNA; 2010 Jun; 16(6):1108-17. PubMed ID: 20413617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins.
    Shcherbakova I; Mitra S; Beer RH; Brenowitz M
    Nucleic Acids Res; 2006 Mar; 34(6):e48. PubMed ID: 16582097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments.
    Laederach A; Das R; Vicens Q; Pearlman SM; Brenowitz M; Herschlag D; Altman RB
    Nat Protoc; 2008; 3(9):1395-401. PubMed ID: 18772866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping small DNA ligand hydroxyl radical footprinting and affinity cleavage products for capillary electrophoresis.
    He G; Vasilieva E; Bashkin JK; Dupureur CM
    Anal Biochem; 2013 Aug; 439(2):99-101. PubMed ID: 23608054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonradiochemical DNase I footprinting by capillary electrophoresis.
    Wilson DO; Johnson P; McCord BR
    Electrophoresis; 2001 Jun; 22(10):1979-86. PubMed ID: 11465496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis.
    Vasa SM; Guex N; Wilkinson KA; Weeks KM; Giddings MC
    RNA; 2008 Oct; 14(10):1979-90. PubMed ID: 18772246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural interpretation of DNA-protein hydroxyl-radical footprinting experiments with high resolution using HYDROID.
    Shaytan AK; Xiao H; Armeev GA; Gaykalova DA; Komarova GA; Wu C; Studitsky VM; Landsman D; Panchenko AR
    Nat Protoc; 2018 Nov; 13(11):2535-2556. PubMed ID: 30341436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Footprinting with an automated capillary DNA sequencer.
    Yindeeyoungyeon W; Schell MA
    Biotechniques; 2000 Nov; 29(5):1034-6, 1038, 1040-1. PubMed ID: 11084866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA secondary structure prediction using high-throughput SHAPE.
    Lusvarghi S; Sztuba-Solinska J; Purzycka KJ; Rausch JW; Le Grice SF
    J Vis Exp; 2013 May; (75):e50243. PubMed ID: 23748604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Nonradiochemical DNAse Footprinting to Analyze c-di-GMP Modulation of DNA-Binding Proteins.
    Baraquet C; Harwood CS
    Methods Mol Biol; 2017; 1657():303-315. PubMed ID: 28889304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of computational footprinting methods for DNase sequencing experiments.
    Gusmao EG; Allhoff M; Zenke M; Costa IG
    Nat Methods; 2016 Apr; 13(4):303-9. PubMed ID: 26901649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Beamline X28C of the Center for Synchrotron Biosciences: a national resource for biomolecular structure and dynamics experiments using synchrotron footprinting.
    Gupta S; Sullivan M; Toomey J; Kiselar J; Chance MR
    J Synchrotron Radiat; 2007 May; 14(Pt 3):233-43. PubMed ID: 17435298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting.
    Shcherbakova I; Brenowitz M
    Nat Protoc; 2008; 3(2):288-302. PubMed ID: 18274531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated band annotation for RNA structure probing experiments with numerous capillary electrophoresis profiles.
    Lee S; Kim H; Tian S; Lee T; Yoon S; Das R
    Bioinformatics; 2015 Sep; 31(17):2808-15. PubMed ID: 25943472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative nucleic acids footprinting: thermodynamic and kinetic approaches.
    Petri V; Brenowitz M
    Curr Opin Biotechnol; 1997 Feb; 8(1):36-44. PubMed ID: 9013649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footprinting protein-DNA complexes using the hydroxyl radical.
    Jain SS; Tullius TD
    Nat Protoc; 2008; 3(6):1092-1100. PubMed ID: 18546600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.