BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 18477689)

  • 1. Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus.
    Yoshida A; Tanaka M
    Cereb Cortex; 2009 Jan; 19(1):206-17. PubMed ID: 18477689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of neurons in the non-human primate anterior striatum in proactive inhibition.
    Yoshida A; Hikosaka O
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concomitant improvement in anti-saccade success rate and postural instability gait difficulty after rTMS treatment for Parkinson's disease.
    Okada KI; Takahira M; Mano T; Uga T; Konaka K; Hosomi K; Saitoh Y
    Sci Rep; 2021 Jan; 11(1):2472. PubMed ID: 33510266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review.
    Saga Y; Hoshi E; Tremblay L
    Front Neuroanat; 2017; 11():30. PubMed ID: 28442999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar Roles in Self-Timing for Sub- and Supra-Second Intervals.
    Ohmae S; Kunimatsu J; Tanaka M
    J Neurosci; 2017 Mar; 37(13):3511-3522. PubMed ID: 28242799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders.
    Jahanshahi M; Rothwell JC
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1718):. PubMed ID: 28242732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of Lateral Cerebellum in Proactive Control of Saccades.
    Kunimatsu J; Suzuki TW; Tanaka M
    J Neurosci; 2016 Jun; 36(26):7066-74. PubMed ID: 27358462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition.
    Jahanshahi M; Obeso I; Rothwell JC; Obeso JA
    Nat Rev Neurosci; 2015 Dec; 16(12):719-32. PubMed ID: 26530468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pallidal Deep Brain Stimulation Improves Higher Control of the Oculomotor System in Parkinson's Disease.
    Antoniades CA; Rebelo P; Kennard C; Aziz TZ; Green AL; FitzGerald JJ
    J Neurosci; 2015 Sep; 35(38):13043-52. PubMed ID: 26400935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of basal ganglia output signals in singing juvenile birds.
    Pidoux M; Bollu T; Riccelli T; Goldberg JH
    J Neurophysiol; 2015 Feb; 113(3):843-55. PubMed ID: 25392171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine transporter gene susceptibility to methylation is associated with impulsivity in nonhuman primates.
    Rajala AZ; Zaitoun I; Henriques JB; Converse AK; Murali D; Epstein ML; Populin LC
    J Neurophysiol; 2014 Nov; 112(9):2138-46. PubMed ID: 25122707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye movements in ephedrone-induced parkinsonism.
    Bonnet C; Rusz J; Megrelishvili M; Sieger T; Matoušková O; Okujava M; Brožová H; Nikolai T; Hanuška J; Kapianidze M; Mikeladze N; Botchorishvili N; Khatiashvili I; Janelidze M; Serranová T; Fiala O; Roth J; Bergquist J; Jech R; Rivaud-Péchoux S; Gaymard B; Růžička E
    PLoS One; 2014; 9(8):e104784. PubMed ID: 25117825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.
    Sieger T; Bonnet C; Serranová T; Wild J; Novák D; Růžička F; Urgošík D; Růžička E; Gaymard B; Jech R
    PLoS One; 2013; 8(11):e78581. PubMed ID: 24223158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basal ganglia output to the thalamus: still a paradox.
    Goldberg JH; Farries MA; Fee MS
    Trends Neurosci; 2013 Dec; 36(12):695-705. PubMed ID: 24188636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association.
    Hoshi E
    Front Neural Circuits; 2013; 7():158. PubMed ID: 24155692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of spatial- and object-specific behavioral goals in the dorsal globus pallidus of monkeys during reaching movement.
    Saga Y; Hashimoto M; Tremblay L; Tanji J; Hoshi E
    J Neurosci; 2013 Oct; 33(41):16360-71. PubMed ID: 24107966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the globus pallidus in behavioral goal determination and action specification.
    Arimura N; Nakayama Y; Yamagata T; Tanji J; Hoshi E
    J Neurosci; 2013 Aug; 33(34):13639-53. PubMed ID: 23966686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Beta oscillations in the subthalamic nucleus with prosaccades and antisaccades in Parkinson's disease.
    Yugeta A; Hutchison WD; Hamani C; Saha U; Lozano AM; Hodaie M; Moro E; Neagu B; Chen R
    J Neurosci; 2013 Apr; 33(16):6895-904. PubMed ID: 23595748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primate ventral pallidum encodes expected reward value and regulates motor action.
    Tachibana Y; Hikosaka O
    Neuron; 2012 Nov; 76(4):826-37. PubMed ID: 23177966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA antagonist ketamine reduces task selectivity in macaque dorsolateral prefrontal neurons and impairs performance of randomly interleaved prosaccades and antisaccades.
    Skoblenick K; Everling S
    J Neurosci; 2012 Aug; 32(35):12018-27. PubMed ID: 22933786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.