These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1847832)

  • 1. Synthesis of polyphosphoinositides in transverse tubule and sarcoplasmic reticulum membranes of frog skeletal muscle.
    Asotra K; Lagos N; Vergara J
    Biochim Biophys Acta; 1991 Jan; 1081(2):229-37. PubMed ID: 1847832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling.
    Hidalgo C; Carrasco MA; Magendzo K; Jaimovich E
    FEBS Lett; 1986 Jun; 202(1):69-73. PubMed ID: 3013681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of phosphatidylinositol 4,5-bisphosphate in the endoplasmic reticulum of Chinese hamster ovary cells.
    Helms JB; de Vries KJ; Wirtz KW
    J Biol Chem; 1991 Nov; 266(32):21368-74. PubMed ID: 1657963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoinositides in frog skeletal muscle: a quantitative analysis.
    Lagos N; Vergara J
    Biochim Biophys Acta; 1990 Apr; 1043(3):235-44. PubMed ID: 2157489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylinositol availability and polyphosphoinositide synthesis in pancreatic islet cell membranes.
    Khalaf LJ; Laychock SG
    Biochem Pharmacol; 1992 Mar; 43(6):1303-10. PubMed ID: 1314058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoinositide metabolism in cultured glioma and neuroblastoma cells: subcellular distribution of enzymes indicate incomplete turnover at the plasma membrane.
    Morris SJ; Cook HW; Byers DM; Spence MW; Palmer FB
    Biochim Biophys Acta; 1990 Mar; 1022(3):339-47. PubMed ID: 2156558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of polyphosphoinositide synthesis in cardiac membranes.
    Quist E; Satumtira N; Powell P
    Arch Biochem Biophys; 1989 May; 271(1):21-32. PubMed ID: 2540714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes.
    Varsányi M; Messer M; Brandt NR; Heilmeyer LM
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1395-404. PubMed ID: 3019346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP.
    Eberhard DA; Cooper CL; Low MG; Holz RW
    Biochem J; 1990 May; 268(1):15-25. PubMed ID: 2160809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium modulation of phosphoinositide kinases in transverse tubule vesicles from frog skeletal muscle.
    Carrasco MA; Magendzo K; Jaimovich E; Hidalgo C
    Arch Biochem Biophys; 1988 Apr; 262(1):360-6. PubMed ID: 2833175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of phosphoinositide kinases in normal and sickle anaemia red cells.
    Rhoda-Hardy-Dessources MD; de Neef RS; Mérault G; Giraud F
    Biochim Biophys Acta; 1993 Mar; 1181(1):90-6. PubMed ID: 8384492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle.
    Rosemblatt M; Hidalgo C; Vergara C; Ikemoto N
    J Biol Chem; 1981 Aug; 256(15):8140-8. PubMed ID: 6455421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipase C activity in membranes and a soluble fraction isolated from frog skeletal muscle.
    Angélica Carrasco M; Sierralta J; Hidalgo C
    Biochim Biophys Acta; 1993 Oct; 1152(1):44-8. PubMed ID: 8399304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Endogenous phosphorylation of sarcoplasmic reticulum fragments of rabbit fast skeletal muscles].
    Kurskiĭ MD; Kondratiuk TP; Osipenko AA; Fedorov AN; Grigor'eva VA
    Biokhimiia; 1982 Jan; 47(1):34-42. PubMed ID: 6279180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ regulation of 1-(3-sn-phosphatidyl)-1D-myo-inositol 4-phosphate formation and hydrolysis on sarcoplasmic-reticular Ca2+-transport ATPase. A new principle of phospholipid turnover regulation.
    Schäfer M; Behle G; Varsányi M; Heilmeyer LM
    Biochem J; 1987 Nov; 247(3):579-87. PubMed ID: 2827632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle.
    Jacquemond V; Schneider MF
    J Gen Physiol; 1992 Jul; 100(1):115-35. PubMed ID: 1512554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of polyphosphoinositides in vertebrate photoreceptor membranes.
    Giusto NM; Ilincheta de Boschero MG
    Biochim Biophys Acta; 1986 Jul; 877(3):440-6. PubMed ID: 3015222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Association of rabbit skeletal muscle phosphorylase kinase with sarcoplasmic reticulum membranes].
    Zemskova MA; Shur SA; Skolysheva LK; Vul'fson PL
    Biokhimiia; 1995 Nov; 60(11):1903-10. PubMed ID: 8590760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol 1,4,5-triphosphate phosphatase activity in membranes isolated from amphibian skeletal muscle [corrected].
    Sánchez X; Carrasco MA; Vergara J; Hidalgo C
    FEBS Lett; 1991 Feb; 279(1):58-60. PubMed ID: 1995344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of a 100 000 dalton component and its relationship to calcium transport in sarcoplasmic reticulum from rabbit skeletal muscle.
    Galani-Kranias E; Bick R; Schwartz A
    Biochim Biophys Acta; 1980 Apr; 628(4):438-50. PubMed ID: 6245711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.