These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 18478423)
1. The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Agbogbo FK; Coward-Kelly G; Torry-Smith M; Wenger K; Jeffries TW Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):653-62. PubMed ID: 18478423 [TBL] [Abstract][Full Text] [Related]
2. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997 [TBL] [Abstract][Full Text] [Related]
3. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Rodrigues RC; Lu C; Lin B; Jeffries TW Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752 [TBL] [Abstract][Full Text] [Related]
4. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229 [TBL] [Abstract][Full Text] [Related]
5. Effect of pretreatment chemicals on xylose fermentation by Pichia stipitis. Agbogbo FK; Wenger KS Biotechnol Lett; 2006 Dec; 28(24):2065-9. PubMed ID: 17028775 [TBL] [Abstract][Full Text] [Related]
6. Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Matsushika A; Sawayama S Appl Biochem Biotechnol; 2010 Nov; 162(7):1952-60. PubMed ID: 20432070 [TBL] [Abstract][Full Text] [Related]
7. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Silva JP; Mussatto SI; Roberto IC Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760 [TBL] [Abstract][Full Text] [Related]
8. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
9. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Lin TH; Huang CF; Guo GL; Hwang WS; Huang SL Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402 [TBL] [Abstract][Full Text] [Related]
10. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose. Slininger PJ; Dien BS; Lomont JM; Bothast RJ; Ladisch MR; Okos MR Biotechnol Bioeng; 2014 Aug; 111(8):1532-40. PubMed ID: 24519334 [TBL] [Abstract][Full Text] [Related]
12. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Agbogbo FK; Coward-Kelly G Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen source and mineral optimization enhance D: -xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Slininger PJ; Dien BS; Gorsich SW; Liu ZL Appl Microbiol Biotechnol; 2006 Oct; 72(6):1285-96. PubMed ID: 16676180 [TBL] [Abstract][Full Text] [Related]
14. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Shi NQ; Davis B; Sherman F; Cruz J; Jeffries TW Yeast; 1999 Aug; 15(11):1021-30. PubMed ID: 10455226 [TBL] [Abstract][Full Text] [Related]
15. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of cashew apple juice for the production of fuel ethanol. Pinheiro AD; Rocha MV; Macedo GR; Gonçalves LR Appl Biochem Biotechnol; 2008 Mar; 148(1-3):227-34. PubMed ID: 18418754 [TBL] [Abstract][Full Text] [Related]
17. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
19. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Huang CF; Lin TH; Guo GL; Hwang WS Bioresour Technol; 2009 Sep; 100(17):3914-20. PubMed ID: 19349164 [TBL] [Abstract][Full Text] [Related]
20. A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose. Rao K; Chelikani S; Relue P; Varanasi S Appl Biochem Biotechnol; 2008 Mar; 146(1-3):101-17. PubMed ID: 18421591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]