These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18478437)

  • 1. Hybrid neural network model of an industrial ethanol fermentation process considering the effect of temperature.
    Mantovanelli IC; Rivera EC; da Costa AC; Maciel Filho R
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):817-33. PubMed ID: 18478437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of temperature dependent parameters of a batch alcoholic fermentation process.
    de Andrade RR; Rivera EC; Costa AC; Atala DI; Maugeri Filho F; Maciel Filho R
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):753-63. PubMed ID: 18478432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of yeast metabolism and process dynamics in batch fermentation.
    Sainz J; Pizarro F; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2003 Mar; 81(7):818-28. PubMed ID: 12557315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of continuous fed-batch fermentation process using neural network based model predictive controller.
    Kiran AU; Jana AK
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):801-8. PubMed ID: 19259705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process.
    Yüzgeç U; Türker M; Hocalar A
    ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical monitoring of alcoholic fermentation using NIR spectroscopy.
    Blanco M; Peinado AC; Mas J
    Biotechnol Bioeng; 2004 Nov; 88(4):536-42. PubMed ID: 15470716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mathematical model of ethanol formation by immobilized yeast cells.
    Li X; Jin N
    Chin J Biotechnol; 1991; 7(3):229-39. PubMed ID: 1823593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter estimation for simultaneous saccharification and fermentation of food waste into ethanol using Matlab Simulink.
    Davis RA
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):11-21. PubMed ID: 18401750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of kinetic parameters in a mechanistic model for bioethanol production through a screening technique and optimization.
    de Andrade RR; Rivera EC; Atala DI; Filho RM; Filho FM; Costa AC
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):673-80. PubMed ID: 19125302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.
    Amillastre E; Aceves-Lara CA; Uribelarrea JL; Alfenore S; Guillouet SE
    Bioresour Technol; 2012 Aug; 117():242-50. PubMed ID: 22617033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observer design for differential-algebraic model of an aerobic culture of a recombinant yeast.
    El Assoudi A; El Yaagoubi EH; Hammouri H
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):27-35. PubMed ID: 14505165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of process variables in industrial acetic fermentation by a continuous pilot fermentor and response surfaces.
    Garrido-Vidal D; Pizarro C; González-Sáiz JM
    Biotechnol Prog; 2003; 19(5):1468-79. PubMed ID: 14524708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rotorfermentor. II. Application to ethanol fermentation.
    Margaritis A; Wilke CR
    Biotechnol Bioeng; 1978 May; 20(5):727-53. PubMed ID: 348245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data.
    Coleman MC; Block DE
    Biotechnol Bioeng; 2006 Oct; 95(3):412-23. PubMed ID: 16894631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern analysis techniques to process fermentation curves: application to discrimination of enological alcoholic fermentations.
    Roger JM; Sablayrolles JM; Steyer JP; Bellon-Maurel V
    Biotechnol Bioeng; 2002 Sep; 79(7):804-15. PubMed ID: 12209803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive optimal control of fed-batch alcoholic fermentation.
    Alves TL; Costa AC; Henriques AW; Lima EL
    Appl Biochem Biotechnol; 1998; 70-72():463-78. PubMed ID: 18576013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.